17.如圖是某個(gè)四面體的三視圖,則該四面體的外接球的表面積為( 。
A.52πB.4$\sqrt{13}$πC.13πD.$\frac{52}{3}$$\sqrt{13}$π

分析 通過三視圖,判斷幾何體的形狀,利用三視圖的數(shù)據(jù),求出外接球的表面積,可得答案.

解答 解:由題意可知,幾何體是三棱錐,
底面等腰直角三角形的底邊長為6,底面三角形的高為:3,
棱錐的一條側(cè)棱垂直底面的三角形的一個(gè)頂點(diǎn),棱錐的高為:4.
其外接球相當(dāng)于一個(gè)長寬高分別為:4,3$\sqrt{2}$,3$\sqrt{2}$的長方體,
故外接球的半徑R滿足:2R=$\sqrt{{4}^{2}+(3\sqrt{2})^{2}+(3\sqrt{2})^{2}}$=2$\sqrt{13}$,
∴外接球的表面積S=4πR2=52π,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,球的表面積公式,根據(jù)已知,求出球的直徑(半徑)是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\left\{\begin{array}{l}{2x-3y+7≥0}\\{3x-2y-2≤0}\\{x+y-4≥0}\end{array}\right.$,則z=|$\frac{x}{y+x}$|的取值為[$\frac{1}{4}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,F(xiàn)1,F(xiàn)2為左,右焦點(diǎn),過F2的直線與橢圓交于A,B兩點(diǎn),若△F1AB面積的最大值為6,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知M,N為直線y=2(x+3)在第一象限的兩個(gè)動(dòng)點(diǎn),若分別以M,N為圓心的兩圓相交,且直線x-y+3=0是兩圓的一條公切線,則兩圓的另一條公切線1的方程為y=7(x+3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知△ABC的外心為O,重心為G,且|AB|=4,|AC|=2,則$\overrightarrow{AO}$•$\overrightarrow{AG}$的值是$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如果直線kx+y+2=0(k≠0)上存在一點(diǎn)P(x,y),過點(diǎn)P作圓x2+y2-2x-2y+1=0的切線,切點(diǎn)是T,若PT的最小值是2$\sqrt{2}$,則實(shí)數(shù)k的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a1+a2=0,S4=8
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{{a}_{n}}{{3}^{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是AD、CD、DD1的中點(diǎn).
(I)證明:平面A1BC1∥平面EFG;
(Ⅱ)證明:平面BB1D1⊥平面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{2π}{3}$的單位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案