已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-2
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
(n+1)log2an
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)數(shù)列前n項(xiàng)和的定義可知,a1=s1,an=sn-sn-1,這樣能得到an=2an-1,∴
an
a≈n-1
=2
,所以會得到數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列,所以根據(jù)等比數(shù)列的通項(xiàng)公式,便能求出an.第二問,將an帶入便可求出bn=
1
n(n+1)
,為了求Tn,需把
1
n(n+1)
變成
1
n
-
1
n+1
,這樣便能求出Tn
解答: 解:(Ⅰ)當(dāng)n=1時(shí),S1=2a1-2=a1,∴a1=2;
當(dāng)n>1時(shí),an=Sn-Sn-1=2an-2an-1,∴an=2an-1,∴
an
an-1
=2
;
∴數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列,∴an=2n
(Ⅱ)bn=
1
(n+1)log22n
=
1
n•(n+1)
=
1
n
-
1
n+1

Tn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)
=1-
1
n+1
點(diǎn)評:對于第一問需用的知識是,根據(jù)前n項(xiàng)和的概念S1=a1,an=Sn-Sn-1,這樣即可求出{an}的通項(xiàng).對于第二問用到的知識是將
1
n(n+1)
變成
1
n
-
1
n+1
,帶入前n項(xiàng)和即可求得Tn.這兩種方法或知識點(diǎn)都需要掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
2a
21
,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P(-4,0).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求矩陣M的特征值及其對應(yīng)的特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù)
(1)y=
1
x
•cosx;
(2)y=x•lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直四棱ABCD-A1B1C1D1的底面為正方形,P、O分別是上、下底面的中心,點(diǎn)E是AB的中點(diǎn),AB=kAA1
(Ⅰ)求證:A1E∥平面PBC:
(Ⅱ)當(dāng)k=
2
時(shí),求直線PA與平面PBC所成角的正弦值:
(Ⅲ)當(dāng)k取何值時(shí),O在平面PBC內(nèi)的射影恰好為△PBC的重心?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
1+i
1-i
+3-5i求:
(1)z;
(2)|z|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),x∈D,若存在x1、x2∈D,對任意的x∈D,都有f(x1)≤f(x)≤f(x2),則稱f(x)為“幅度函數(shù)”,其中f(x2)-f(x1)稱為f(x)在D上的“幅度”.
(1)判斷函數(shù)f(x)=
3-2x-x2
是否為“幅度函數(shù)”,如果是,寫出其“幅度”;
(2)已知x(y-1)-2n-1y+2n=0(x∈Z,n為正整數(shù)),記y關(guān)于x的函數(shù)的“幅度”為bn,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)在(2)的條件下,令g(n)=lg
2
bn+1
+lg
2
bn+2
+…+lg
2
b2n
,求g(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x滿足不等式6(log
1
3
x)2+5log
1
3
x+1≤0
,試求f(x)=log3(9x)•log3(81x)+2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<A<
π
2
,-π<B<
π
2
,則2A-
1
3
B的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的中心為O,過其右焦點(diǎn)F的直線與兩條漸近線交于A,B,
FA
BF
同向,且
FA
OA
,若|
OA
|+|
OB
|=2|
AB
|,則雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案