分析 (1)求出圓心到直線的距離,|AB|,即可求△ABC的面積;
(2)直線l:x+y+m=0,圓C:(x-2)2+(y-1)2=9聯(lián)立,利用韋達(dá)定理,結(jié)合k1•k2=-2.斜率公式,即可求實(shí)數(shù)m的值.
解答 解:(1)若m=-2,直線l:x+y-2=0,∴圓心到直線的距離d=$\frac{|2+1-2|}{\sqrt{2}}$=$\frac{1}{\sqrt{2}}$,
∴|AB|=2$\sqrt{9-\frac{1}{2}}$=$\sqrt{34}$,
∴△ABC的面積S=$\frac{1}{2}×\sqrt{34}×\frac{1}{\sqrt{2}}$=$\frac{\sqrt{17}}{2}$;
(2)設(shè)A(x1,y1),B(x2,y2)
直線l:x+y+m=0,圓C:(x-2)2+(y-1)2=9聯(lián)立可得2x2+(2m-2)x+m2+2m-4=0.
∴x1+x2=1-m,x1x2=$\frac{1}{2}$(m2+2m-4)
k1•k2=$\frac{{y}_{1}-1}{{x}_{1}-2}$•$\frac{{y}_{2}-1}{{x}_{2}-2}$=$\frac{{x}_{1}{x}_{2}+(m+1)({x}_{1}+{x}_{2})+(m+1)^{2}}{{x}_{1}{x}_{2}-2({x}_{1}+{x}_{2})+4}$=-2,
∴3x1x2+(m-3)(x1+x2)+(m+1)2+8=0
∴3•$\frac{1}{2}$(m2+2m-4)+(m-3)(1-m)+(m+1)2+8=0,
∴m2+4m-2=0,
∴m=-2±$\sqrt{6}$
點(diǎn)評 本題考查三角形面積的計(jì)算,考查直線與圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3} | B. | {1,2} | C. | {1,3} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,-4,6) | B. | (-6,-6,-5) | C. | (10,0,7) | D. | (10,-6,19) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com