分析 (1)由三角形中位線性質(zhì)得EF∥AB,從而EF∥平面ABC,同理:FG∥平面ABC,由此能證明平面EFG∥平面ABC.
(2)由已知條件推導(dǎo)出AF⊥BC,利用BC⊥SA,由此能證明BC⊥面SAB,即可證明AB⊥BC.
解答 證明:(1)∵AS=AB,AF⊥SB,∴F是SB的中點(diǎn),
∵E、F分別是SA、SB的中點(diǎn),
∴EF∥AB,
又∵EF?平面ABC,AB⊆平面ABC,
∴EF∥平面ABC,
同理:FG∥平面ABC,
又∵EF∩FG=F,EF、FG⊆平面ABC,
∴平面EFG∥平面ABC.
(2)∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AF?平面SAB,
∴AF⊥SB,
∴AF⊥平面SBC,
又∵BC?平面SBC,∴AF⊥BC,
∵BC⊥SA,SA∩AF=A,SA、AF?平面SAB,
∴BC⊥面SAB,
∵AB?面SAB,
∴BC⊥AB.
點(diǎn)評(píng) 本題考查平面與平面平行的證明,考查線面平行的證明,考查線面垂直的判定與性質(zhì),注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k+l=0 | B. | k-l=0 | C. | kl+1=0 | D. | kl-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{1-{m}^{2}}}{m}$ | B. | -$\frac{\sqrt{1-{m}^{2}}}{m}$ | C. | ±$\frac{\sqrt{1-{m}^{2}}}{m}$ | D. | $\frac{m}{\sqrt{1-{m}^{2}}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com