分析 由f(x)是R上的增函數(shù),得f′(x)≥0恒成立,運(yùn)用判別式小于等于0,解不等式即可求出a的取值范圍.
解答 解:∵f(x)是R上的單調(diào)遞增函數(shù),且f′(x)=9x2-6ax+6,
∴f′(x)≥0恒成立,即9x2-6ax+6≥0,
∴判別式△=36a2-4×9×6≤0,
解得-$\sqrt{6}$≤a≤$\sqrt{6}$,
∴a的取值范圍是[-$\sqrt{6}$,$\sqrt{6}$].
點(diǎn)評(píng) 本題考查了利用函數(shù)的導(dǎo)數(shù)來(lái)判定函數(shù)的單調(diào)性問題,同時(shí)考查二次不等式恒成立問題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4x-3y-1=0 | B. | 3x-2y-1=0 | C. | 4x-y-3=0 | D. | x-y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com