分析 直接根據(jù)同角三角函數(shù)之間的關(guān)系對(duì)函數(shù)進(jìn)行化簡(jiǎn),再結(jié)合正弦函數(shù)單調(diào)性及周期的求法即可得到結(jié)論.
解答 解:因?yàn)椋簓=sin4x+cos4x
=(sin2x+cos2x)2-2sin2x•cos2x
=1-$\frac{1}{2}$sin22x=1-$\frac{1}{2}$•$\frac{1-cos4x}{2}$
=1-$\frac{1-cos4x}{4}$
=$\frac{3}{4}$+$\frac{cos4x}{4}$.
所以:所求最小正周期T=$\frac{2π}{4}$=$\frac{π}{2}$,
由cos4x∈[-1,1],可得y=sin4x+cos4x=$\frac{3}{4}$+$\frac{cos4x}{4}$∈[$\frac{1}{2}$,1].
點(diǎn)評(píng) 本題主要考查三角函數(shù)中的恒等變換以及三角函數(shù)的周期的求法.函數(shù)y=Asin(ωx+φ)+b的周期公式為 T=2$\frac{2π}{|ω|}$,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$ | B. | $f(1)>2f(\frac{π}{6})sin1$ | C. | $\sqrt{2}f({\frac{π}{6}})<f({\frac{π}{4}})$ | D. | $\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {5} | C. | {1,3} | D. | {4,5} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com