A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
分析 不妨設(shè)a=k,b=2k,c=$\sqrt{7}$k,余弦定理可得cosC=-$\frac{1}{2}$,又C∈(0,π),即可解得C的值.
解答 解:不妨設(shè)a=k,b=2k,c=$\sqrt{7}$k,
則由余弦定理可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{k}^{2}+4{k}^{2}-7{k}^{2}}{2×k×2k}$=-$\frac{1}{2}$,
又C∈(0,π),解得:C=$\frac{2π}{3}$.
故選:B.
點評 本題主要考查了余弦定理,余弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $a>\frac{3}$ | B. | $b<\frac{a}{3}$ | C. | $a≤\frac{3}$ | D. | $b≥\frac{a}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$a2+a+$\frac{1}{2}$=a2+2a+1=(a+1)2 | B. | a2+ab-6b2=a(a+b)-6b2 | ||
C. | a2-b2-a-b=(a+b)(a-b)-a-b | D. | a-2a2+a3=a(1-2a+a2)=a(1-a)2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{π}{4}$,2π] | B. | [0,$\frac{π}{4}$] | C. | [-$\frac{π}{4}$,$\frac{π}{4}$] | D. | [0,$\frac{π}{4}$]∪[$\frac{7π}{4}$,2π] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\frac{1}{{x}^{2}}$ | B. | y=$\sqrt{x+2}$ | C. | y=$\root{3}{x}$ | D. | y=$\sqrt{{x}^{2}-1}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com