5.已知定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時(shí)的解析式為f(x)=-x2+4x-3.
(1)求這個(gè)函數(shù)在R上的解析式;
(2)作出f(x)的圖象,并根據(jù)圖象直接寫出函數(shù)f(x)的單調(diào)區(qū)間.

分析 (1)根據(jù)當(dāng)x∈(0,+∞)時(shí)的解析式,利用奇函數(shù)的性質(zhì),求得x≤0時(shí)函數(shù)的解析式,從而得到函數(shù)在R上的解析式.
(2)根據(jù)函數(shù)的解析式、奇函數(shù)的性質(zhì),作出函數(shù)的圖象,數(shù)形結(jié)合可得函數(shù)f(x)的單調(diào)區(qū)間.

解答 解:(1)當(dāng)x<0時(shí),-x>0,∵f(x)為R上的奇函數(shù),∴f(-x)=-f(x),
∴f(x)=-f(-x)=-[-(-x)2+4(-x)-3]=x2+4x+3,
即x<0時(shí),f(x)=x2+4x+3.
當(dāng)x=0時(shí),由f(-x)=-f(x)得:f(0)=0,
所以,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x-3,}&{x>0}\\{0,}&{x=0}\\{{x}^{2}+4x+3,}&{x<0}\end{array}\right.$.       
(2)作出f(x)的圖象(如圖所示)
數(shù)形結(jié)合可得函數(shù)f(x)的減區(qū)間:
(-∞,-2)、(2,+∞);增區(qū)間為[-2,0)、(0,2].

點(diǎn)評(píng) 本題主要考查利用函數(shù)的奇偶性求函數(shù)的解析式,作函數(shù)的圖象,求函數(shù)的單調(diào)區(qū)間,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用1,2,3,4排成數(shù)字不重復(fù)的四位數(shù),若已知1、2相鄰,則1、3相鄰的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若$sinα=-\frac{5}{13},且α$為第四象限角,則$tan({α+\frac{π}{4}})$的值等于(  )
A.$\frac{7}{17}$B.$\frac{17}{7}$C.$-\frac{5}{12}$D.$\frac{10}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖一個(gè)幾何體的正視圖和俯視圖如圖所示,其中俯視圖為邊長(zhǎng)為2$\sqrt{3}$的正三角形,且圓與三角形內(nèi)切,則該幾何體的體積為$6\sqrt{3}+\frac{4π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)y=2x+1+m的圖象不經(jīng)過第二象限,則m的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)中,值域?yàn)椋?,+∞)的是( 。
A.y=-5xB.$y={(\frac{1}{3})^{1-x}}$
C.y=x2-2x+3,x∈(-∞,2]D.$y=\frac{1}{x+1},x∈[0,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以雙曲線$\frac{x^2}{4}-{y^2}=1$的中心為頂點(diǎn),右焦點(diǎn)為焦點(diǎn)的拋物線方程是(  )
A.y2=4xB.${y^2}=4\sqrt{5}x$C.${y^2}=8\sqrt{5}x$D.${y^2}=\sqrt{5}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,若a:b:c=1:2:$\sqrt{7}$,則角C=( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=x2在區(qū)間[2,3]上的最大值與最小值的差為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案