14.雙曲線$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的焦點坐標是(-4,0),(4,0).

分析 求得雙曲線的a,b,由c=$\sqrt{{a}^{2}+^{2}}$,求得c,進而得到雙曲線的焦點坐標.

解答 解:雙曲線$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1的a=2$\sqrt{3}$,b=2,
c=$\sqrt{{a}^{2}+^{2}}$=4,
可得雙曲線的焦點坐標為(-4,0),(4,0).
故答案為:(-4,0),(4,0).

點評 本題考查雙曲線的焦點坐標,注意運用雙曲線的基本量的關(guān)系,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{3}$,若拋物線C2:y2=2px(p>0)的焦點到雙曲線C1的漸近線的距離為$\sqrt{2}$,則拋物線C2的方程為(  )
A.y2=2$\sqrt{3}$xB.y2=4$\sqrt{3}$xC.y2=4xD.y2=6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知F是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點,若以F為圓心的圓C:x2+y2-4x+3=0與雙曲線的漸近線相切,則雙曲線的標準方程為$\frac{{x}^{2}}{3}$-y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.執(zhí)行如圖的程序框圖,則輸出的S=$\frac{25}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線的方程為y=-$\sqrt{2}$x,則該雙曲線的離心率為(  )
A.$\frac{3}{2}$B.$\frac{{\sqrt{6}}}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若斜率為k(k≠0)的直線l與雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}=1$相交于兩個不同的點M,N,且線段MN的中垂線與兩坐標軸圍成的三角形的面積為$\frac{81}{2}$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點F($\sqrt{5}$,0)是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,且點F到雙曲線的漸近線的距離等于1,則此雙曲線的漸近線方程為y=±$\frac{1}{2}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若{an}是等差數(shù)列,首項a1>0,a2016+a2017>0,a2016.a(chǎn)2017<0,則使前n項和Sn>0成立的最大自然數(shù)n是( 。
A.4031B.4033C.4034D.4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.橢圓經(jīng)過$A(\sqrt{3},-2)$,$B(-2\sqrt{3},1)$,則該橢圓的標準方程為$\frac{{x}^{2}}{15}+\frac{{y}^{2}}{5}=1$.

查看答案和解析>>

同步練習(xí)冊答案