分析 設(shè)$(x-\frac{1}{x})^{6}$的通項公式Tr+1=${∁}_{6}^{r}{x}^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}{x}^{6-2r}$.(r=0,1,2,…,6).可得$({{x^2}+m}){({x-\frac{1}{x}})^6}$展開式中含x2的項的系數(shù).
解答 解:設(shè)$(x-\frac{1}{x})^{6}$的通項公式Tr+1=${∁}_{6}^{r}{x}^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}{x}^{6-2r}$.(r=0,1,2,…,6).
∴$({{x^2}+m}){({x-\frac{1}{x}})^6}$展開式中含x2的項的系數(shù)為:$(-1){∁}_{6}^{3}$×1+m•(-1)2${∁}_{6}^{2}$.
∴$-{∁}_{6}^{3}$+m${∁}_{6}^{2}$=$-\frac{25}{2}$,解得m=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 本題考查了二項式定理的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x | B. | y=0 | C. | x=0 | D. | y=$\frac{1}{2}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com