17.如圖,在平行六面體ABCD-A1B1C1D1中,O是B1D1的中點(diǎn),求證:B1C∥平面ODC1

分析 連結(jié)CD1,交DC1于E,連結(jié)OE,由三角形中位線定理得OE∥B1C,由此能證明B1C∥平面ODC1

解答 證明:連結(jié)CD1,交DC1于E,
∵平行六面體ABCD-A1B1C1D1中,DCC1D1是平行四邊形,
∴E是DC1的中點(diǎn),
連結(jié)OE,∵O是B1D1的中點(diǎn),∴OE∥B1C,
∵B1C?平面ODC1,OE?平面ODC1,
∴B1C∥平面ODC1

點(diǎn)評(píng) 本題考查線面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等比數(shù)列{an}的公比q>1,前n項(xiàng)和為Sn,并且滿足a2+a3+a4=28,a3+2是a2和a4的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn>254-n•2n+1成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知O是△ABC所在平面內(nèi)一點(diǎn).
(1)已知D為BC邊中點(diǎn),且2$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,證明:$\overrightarrow{AO}=\overrightarrow{OD.}$;
(2)已知$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}$=$\overrightarrow{0}$,△BOC的面積為2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,一條準(zhǔn)線方程為x=3,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}滿足a1=1,$\frac{{a}_{n}+1}{n+1}$=$\frac{{a}_{n}}{n}$+1,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=3n•$\sqrt{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知一次函數(shù)的圖象經(jīng)過點(diǎn)(1,0)和(0,1),則此一次函數(shù)的解析式為( 。
A.f(x)=-xB.f(x)=x-1C.f(x)=x+1D.f(x)=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列幾個(gè)命題:
①方程x2+(a-3)x+a=0若有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0;
②函數(shù)f(x)=a是偶函數(shù),但不是奇函數(shù);
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)椋?3,1);
④一條曲線y=|3-x2|和直線y=a,(a∈R)的公共點(diǎn)個(gè)數(shù)是M,則M的值不可能是1;
其中正確的有①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=x2-x-1的頂點(diǎn)坐標(biāo)是 ( 。
A.(-$\frac{1}{2}$,$\frac{5}{4}$)B.($\frac{1}{2}$,-$\frac{5}{4}$)C.(-$\frac{1}{2}$,-$\frac{5}{4}$)D.($\frac{1}{2}$,$\frac{5}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.有下列說法:①曲線的切線與曲線有且只有一個(gè)公共點(diǎn):
②曲線上任意一點(diǎn)都可以用割線逼近切線的方法作出過此點(diǎn)的切線:
③曲線在點(diǎn)P附近經(jīng)過放大后可以近似的看成直線,則曲線在點(diǎn)P處一定存在切線;
④以曲線上某點(diǎn)為切點(diǎn)的曲線的切線可以作出兩條.
其中,正確的是③(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案