6.函數(shù)y=x2-x-1的頂點(diǎn)坐標(biāo)是 ( 。
A.(-$\frac{1}{2}$,$\frac{5}{4}$)B.($\frac{1}{2}$,-$\frac{5}{4}$)C.(-$\frac{1}{2}$,-$\frac{5}{4}$)D.($\frac{1}{2}$,$\frac{5}{4}$)

分析 根據(jù)題意,運(yùn)用配方法可得y=x2-x-1=(x-$\frac{1}{2}$)2-$\frac{5}{4}$,即可得該二次函數(shù)的頂點(diǎn)坐標(biāo),即可得答案.

解答 解:根據(jù)題意,y=x2-x-1=(x-$\frac{1}{2}$)2-$\frac{5}{4}$,
即函數(shù)y=x2-x-1的頂點(diǎn)坐標(biāo)($\frac{1}{2}$,$\frac{5}{4}$);
故選:B.

點(diǎn)評(píng) 本題考查二次函數(shù)的基本性質(zhì),求二次函數(shù)的頂點(diǎn)坐標(biāo)可以用配方法,也可以用公式直接計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ln(1+x)[2+ln(1+x)]-2x.
(1)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單減;
(2)若不等式(n+$\frac{k}{2}$)ln(1+$\frac{1}{n}$)≤1對(duì)?∈N*都成立,求k+2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在平行六面體ABCD-A1B1C1D1中,O是B1D1的中點(diǎn),求證:B1C∥平面ODC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,空間四邊形ABCD的每條邊和AC,BD的長(zhǎng)都等于a,點(diǎn)M,N分別是AB,CD的中點(diǎn),求證:MN⊥AB,MN⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(ax2+2x+1)的定義域?yàn)槿w實(shí)數(shù),則a的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知方程x=3-lgx,下列說(shuō)法正確的是( 。
A.方程x=3-lgx的解在區(qū)間(0,1)內(nèi)B.方程x=3-lgx的解在區(qū)間(1,2)內(nèi)
C.方程x=3-lgx的解在區(qū)間(2,3)內(nèi)D.方程x=3-lgx的解在區(qū)間(3,4)內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若一元二次不等式x2-$\frac{2}{\sqrt{a}}$x+1-$\frac{1}$>0(b>a)的解集為{x|x≠$\frac{1}{\sqrt{a}}$},則$\frac{4}{a-1}$+$\frac{16}{b-1}$的最小值為(  )
A.16B.25C.36D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,墻上有一壁畫,最高點(diǎn)A離地面4米,最低點(diǎn)B離地面2米.觀察者從距離墻x(x>1)米,離地面高a(1≤a≤2)米的C處觀賞該壁畫,設(shè)觀賞視角∠ACB=θ.
(1)若a=1.5,問(wèn):觀察者離墻多遠(yuǎn)時(shí),視角θ最大?
(2)若tanθ=$\frac{1}{2}$,當(dāng)a變化時(shí),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知O為坐標(biāo)原點(diǎn),實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≤0}\\{3x+4y≤12}\\{x-1≥0}\end{array}\right.$,P(x,y)為該不等式組所表示的平面區(qū)域內(nèi)任意一點(diǎn),使z=x+2y取最大值的點(diǎn)為A點(diǎn),則|OP|•|AO|•cos∠AOP的最大值等于( 。
A.$\frac{97}{16}$B.$\frac{11}{2}$C.$\frac{167}{28}$D.$\frac{38}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案