【題目】設(shè)a,b為兩條直線,α,β為兩個(gè)平面,下列四個(gè)命題中,正確的命題是(
A.若a,b與α所成的角相等,則α∥b
B.若a∥α,b∥β,α∥β,則a∥b
C.若aα,bβ,α∥b,則α∥β
D.若a⊥α,b⊥β,α⊥β,是a⊥b

【答案】D
【解析】解:A、直線a,b的方向相同時(shí)才平行,不正確;
B、用長(zhǎng)方體驗(yàn)證.如圖,設(shè)A1B1為a,平面AC為α,BC為b,平面A1C1為β,顯然有a∥α,b∥β,α∥β,但得不到a∥b,不正確;
C、可設(shè)A1B1為a,平面AB1為α,CD為b,平面AC為β,滿足選項(xiàng)C的條件卻得不到α∥β,不正確;
D、∵a⊥α,α⊥β,
∴aβ或a∥β
又∵b⊥β
∴a⊥b
故選D

【考點(diǎn)精析】利用空間中直線與直線之間的位置關(guān)系和空間中直線與平面之間的位置關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn);直線在平面內(nèi)—有無(wú)數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(1,3)B(3,1),C(﹣1,0)求:
(1)求BC及BC邊上的中線所在直線的方程;
(2)求BC邊上的垂直平分線所在直線方程;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程

已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.

(1)求的值;

(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩位同學(xué)玩游戲,對(duì)于給定的實(shí)數(shù)a1 , 按下列方法操作一次產(chǎn)生一個(gè)新的實(shí)數(shù):由甲、乙同時(shí)各擲一枚均勻的硬幣,如果出現(xiàn)兩個(gè)正面朝上或兩個(gè)反面朝上,則把a(bǔ)1乘以2后再減去12;如果出現(xiàn)一個(gè)正面朝上,一個(gè)反面朝上,則把a(bǔ)1除以2后再加上12,這樣就可以得到一個(gè)新的實(shí)數(shù)a2 , 對(duì)實(shí)數(shù)a2仍按上述方法進(jìn)行一次操作,又得到一個(gè)新的實(shí)數(shù)a3 , 當(dāng)a3>a1 , 甲獲勝,否則乙獲勝,若甲獲勝的概率為 ,則a1的取值范圍是(
A.(﹣∞,12]
B.[24,+∞)
C.(12,24)
D.(﹣∞,12]∪[24,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)進(jìn)入某商場(chǎng)的每一位顧客購(gòu)買甲種商品的概率為0.5,購(gòu)買乙種商品的概率為0.6,且購(gòu)買甲種商品與購(gòu)買乙種商品相互獨(dú)立,各顧客之間購(gòu)買商品也是相互獨(dú)立的.
(1)求進(jìn)入商場(chǎng)的1位顧客購(gòu)買甲、乙兩種商品中的一種的概率;
(2)求進(jìn)入商場(chǎng)的1位顧客至少購(gòu)買甲、乙兩種商品中的一種的概率;
(3)記ξ表示進(jìn)入商場(chǎng)的3位顧客中至少購(gòu)買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列三個(gè)類比結(jié)論.
①(ab)n=anbn與(a+b)n類比,則有(a+b)n=an+bn;
②loga(xy)=logax+logay與sin(α+β)類比,則有sin(α+β)=sinαsinβ;
③(a+b)2=a2+2ab+b2與( + 2類比,則有( + 2= 2+2 + 2
其中結(jié)論正確的個(gè)數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).

(1)將兩曲線化成普通坐標(biāo)方程;

(2)求兩曲線的公共弦長(zhǎng)及公共弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:sin230°+sin290°+sin2150°= ,sin25°+sin265°+sin2125°= .通過觀察上述兩等式的規(guī)律,請(qǐng)你寫出一般性的命題,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F為橢圓C: + =1的右焦點(diǎn),橢圓C上任意一點(diǎn)P到點(diǎn)F的距離與點(diǎn)P到直線l:x=m的距離之比為 ,求:
(1)直線l方程;
(2)設(shè)A為橢圓C的左頂點(diǎn),過點(diǎn)F的直線交橢圓C于D、E兩點(diǎn),直線AD、AE與直線l分別相交于M、N兩點(diǎn).以MN為直徑的是圓是否恒過一定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案