12.已知函數(shù)f(x)=$\frac{4^x}{{2+{4^x}}}$
(1)求$f({\frac{1}{2}})$;
(2)求f(x)+f(1-x)的值;
(3)求$f({\frac{1}{10}})+f({\frac{2}{10}})+f({\frac{3}{10}})+…+f({\frac{8}{10}})+f({\frac{9}{10}})的值$.

分析 (1)根據(jù)已知中函數(shù)f(x)=$\frac{4^x}{{2+{4^x}}}$,將x=$\frac{1}{2}$代入可得答案;
(2)求出f(1-x)的表達(dá)式,相加可得f(x)+f(1-x)=1;
(3)根據(jù)(2)中結(jié)論,可得$f({\frac{1}{10}})+f({\frac{2}{10}})+f({\frac{3}{10}})+…+f({\frac{8}{10}})+f({\frac{9}{10}})的值$.

解答 解:(1)∵f(x)=$\frac{4^x}{{2+{4^x}}}$,
∴$f({\frac{1}{2}})$=$\frac{{4}^{\frac{1}{2}}}{2+{4}^{\frac{1}{2}}}$=$\frac{2}{2+2}$=$\frac{1}{2}$;
(2)∵f(1-x)=$\frac{{4}^{1-x}}{2+{4}^{1-x}}$=$\frac{{4}^{\;}}{2•{4}^{x}+{4}^{\;}}$=$\frac{2}{2+{4}^{x}}$,
∴f(x)+f(1-x)=$\frac{4^x}{{2+{4^x}}}$+$\frac{2}{2+{4}^{x}}$=1,
(3)由(2)知:$f(\frac{1}{10})+f(\frac{2}{10})+f(\frac{3}{10})+…+f(\frac{8}{10})+f(\frac{9}{10})$=$\frac{9}{2}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)求值,其中得到f(x)+f(1-x)=1是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.集合M={y|y=ex+$\frac{1}{2}$},N={x∈N|0≤x+1≤3},則M∩N等于(  )
A.{1,2}B.{0,1,2}C.($\frac{1}{2}$,2]D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.正方形ABCD、正方形BEFG和正方形RKPF的位置如圖所示,點(diǎn)G在線段DK上,正方形BEFG的邊長(zhǎng)為4,則△DEK的面積為( 。
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=aln(x-1)+x2-3x+b(a,b∈R).
(Ⅰ)若函數(shù)f (x)的圖象在點(diǎn)(2,f(2))處的切線方程為x+y-1=0,求a,b的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間〔2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知命題p:|x-1|+|x+1|≥3a恒成立,命題q:y=(2a-1)x為減函數(shù).
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍.
(2)若命題q為真命題,求實(shí)數(shù)a的取值范圍.
(3)若“p∧q”為真命題.求實(shí)數(shù)a的取值范圍.
(4)若“p∨q”與“?p∨?q”都為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.計(jì)算:lg0.01+log327=1;${2^{-3}},{3^{\frac{1}{2}}},{log_2}5$三個(gè)數(shù)最大的是log25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b,x<1}\\{{2}^{x},x≥1}\end{array}\right.$,若f[f($\frac{1}{3}$)]=4,則b=( 。
A.1B.-$\frac{1}{4}$C.-$\frac{1}{4}$或1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,正方形ABCD的邊長(zhǎng)為2,O為AD的中點(diǎn),射線OP從OA出發(fā),繞著點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)至OD,在旋轉(zhuǎn)的過(guò)程中,記∠AOP為x(x∈[0,π),OP所經(jīng)過(guò)的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積S=f(x),那么對(duì)于函數(shù)f(x)有以下三個(gè)結(jié)論:
①f($\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$
②函數(shù)f(x)在($\frac{π}{2}$,π)上為減函數(shù)
③任意x∈[0,$\frac{π}{2}$],都有f($\frac{π}{2}$-x)+f($\frac{π}{2}$+x)=4
其中所有正確結(jié)論的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知數(shù)列1,a1,a2,4成等差數(shù)列,數(shù)列1,b1,b2,b3,4成等比數(shù)列,則a2b2的值( 。
A.±3B.3C.±6D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案