17.計(jì)算:lg0.01+log327=1;${2^{-3}},{3^{\frac{1}{2}}},{log_2}5$三個(gè)數(shù)最大的是log25.

分析 ①利用對(duì)數(shù)的運(yùn)算法則即可得出;
②由于2-3=$\frac{1}{8}$,${3}^{\frac{1}{2}}$<$\sqrt{4}$=2,log25>log24=2,即可得出大小關(guān)系.

解答 解:①lg0.01+log327=lg10-2+$lo{g}_{3}{3}^{3}$=-2+3=1;
②2-3=$\frac{1}{8}$,${3}^{\frac{1}{2}}$<$\sqrt{4}$=2,log25>log24=2,因此最大的數(shù)是log25.
綜上可得答案分別為:1;log25.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算法則、指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)f(x)=ax2+bx滿(mǎn)足f(0)=f(1),且f(x)的最小值為-$\frac{1}{4}$.
(1)求函數(shù)f(x)的解析式;
(2)若不等式f(x)≥tx-1對(duì)x∈[$\frac{1}{2}$,3]恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè)g(x)=$\frac{f(x)+1}{x}$,若方程g(x)=t-1在x∈[$\frac{1}{2}$,3]有實(shí)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.f(x)=ax3+3x2+2,若f′(-1)=7,則a的值等于( 。
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.等差數(shù)列{an}中,前n項(xiàng)和為Sn,|a3|=|a9|,公差d<0.若存自然數(shù)N,對(duì)于任意的自然數(shù)n≥N,總有Sn+1≤Sn成立,則N值為( 。
A.7和8B.6和7C.5和6D.4和5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{4^x}{{2+{4^x}}}$
(1)求$f({\frac{1}{2}})$;
(2)求f(x)+f(1-x)的值;
(3)求$f({\frac{1}{10}})+f({\frac{2}{10}})+f({\frac{3}{10}})+…+f({\frac{8}{10}})+f({\frac{9}{10}})的值$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)命題p:函數(shù)f(x)=x3在R上為增函數(shù);命題q:函數(shù)f(x)=cosx為奇函數(shù).則下列命題中真命題是( 。
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在數(shù)列{an}中,已知a1=$\frac{1}{4}$,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{4}$,bn=log${\;}_{\frac{1}{4}}$an(n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}滿(mǎn)足cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若復(fù)數(shù)Z1=3+i,Z2=2-i,則$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{1-lo{g}_{2}x,x>1}\end{array}\right.$,則f(f(8))=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案