分析 (Ⅰ)由Sn=$\frac{{a}_{1}+{a}_{n}}{2}$•n=999求得n,再由an=a1+(n-1)d=54解得d;
(Ⅱ)化簡a4=a1•q3=64得q=-4;從而求前n項和Sn.
解答 解:(Ⅰ)Sn=$\frac{{a}_{1}+{a}_{n}}{2}$•n=999,
即37n=999,解得,n=27;
由an=a1+(n-1)d=54,
即20+(27-1)d=54,
解得,d=$\frac{17}{13}$;
(Ⅱ)a4=a1•q3=64,即-1•q3=64,
解得,q=-4;
故Sn=$\frac{-1(1-(-4)^{n})}{1-(-4)}$=$\frac{(-4)^{n}-1}{5}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值為3,無最小值 | B. | 無最大值,最小值為3 | ||
C. | 無最大值,無最小值 | D. | 無最大值,最小值為$\frac{33}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{S}_{8}}{{a}_{8}}$ | B. | $\frac{{S}_{9}}{{a}_{9}}$ | C. | $\frac{{S}_{10}}{{a}_{10}}$ | D. | $\frac{{S}_{11}}{{a}_{11}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -240 | B. | -160 | C. | 160 | D. | 240 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com