19.某地植被面積 x(公頃)與當(dāng)?shù)貧鉁叵陆档亩葦?shù)y(℃)之間有如下的對(duì)應(yīng)數(shù)據(jù):
x(公頃)2040506080
y(℃)34445
(1)請(qǐng)用最小二乘法求出y關(guān)于x的線性回歸方程$\widehaty=\hat bx+\hat a$;
(2)根據(jù)(1)中所求線性回歸方程,如果植被面積為200公頃,那么下降的氣溫大約是多少℃?
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

分析 (1)先求出五對(duì)數(shù)據(jù)的平均數(shù),求出年份和人口數(shù)的平均數(shù),得到樣本中心點(diǎn),把所給的數(shù)據(jù)代入公式,利用最小二乘法求出線性回歸方程的系數(shù),再求出a的值,從而得到線性回歸方程.
(2)(2)把當(dāng)x=200時(shí),代入線性回歸方程,得到8.5°C,即下降的氣溫大約是多少8.5°C.

解答 解:(1)$\overline x=\frac{20+40+50+60+80}{5}=50$,$\overline y=\frac{3+4+4+4+5}{5}=4$.$\sum_{i=1}^5{{x_i}{y_i}}=20×3+40×4+50×4+60×4+80×5=1060$,$\sum_{i=1}^5{{x_i}^2}={20^2}+{40^2}+{50^2}+{60^2}+{80^2}=14500$.
所以 $\hat b=\frac{1060-5×50×4}{{14500-5×{{50}^2}}}=0.03$,$\hat a=4-0.03×50=2.5$.
故y關(guān)于x的線性回歸方程$\widehaty=0.03x+2.5$.
(2)由(1)得:當(dāng)x=200時(shí),$\widehaty=0.03×200+2.5=8.5$.
所以植被面積為200公頃時(shí),下降的氣溫大約是8.5°C.

點(diǎn)評(píng) 本題考查線性回歸方程,考查最小二乘法,考查預(yù)報(bào)值的求法,是一個(gè)新課標(biāo)中出現(xiàn)的新知識(shí)點(diǎn),已經(jīng)在廣東的高考卷中出現(xiàn)過類似的題目,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.雙曲線2x2-y2=1的漸近線方程是( 。
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)$a={log}_{\frac{2}{5}}2,b={(\frac{1}{2})}^{\frac{1}{5}},c={2}^{\frac{2}{5}}$,則a,b,c的大小關(guān)系是(  )
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖AC1是棱長為2的正方體,M為B1C1的中點(diǎn),給出下列命題:
①AB1與BC1成60°角;
②若$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{N{C}_{1}}$,面A1MN交CD于E,則CE=$\frac{1}{3}$;
③P點(diǎn)在正方形ABB1A1邊界及內(nèi)部運(yùn)動(dòng),且MP⊥DB1,則P點(diǎn)軌跡長等于$\sqrt{2}$;
④E,F(xiàn)分別在DB1和A1C1上,且$\frac{DE}{E{B}_{1}}$=$\frac{{A}_{1}F}{F{C}_{1}}$=2,直線EF與AD1,A1D所成角分別是α,β,則α+β=$\frac{π}{2}$.
其中正確的命題有①③④.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,則輸出S的值是( 。
A.336B.$\frac{1}{336}$C.2016D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知等差數(shù)列{an},若a1=-11,a4+a6=-6,則an=2n-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在極坐標(biāo)系中,從四條曲線C1:ρ=1、C2:θ=$\frac{π}{3}$(ρ≥0)、C3:ρ=cosθ、C4:ρsinθ=1中隨機(jī)選取兩條,記它們的交點(diǎn)個(gè)數(shù)為隨機(jī)變量ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC中,A、B、C所對(duì)的邊分別為a、b、c,且bsinB=(sinA-sinC)(a+c)數(shù)列an=n2n-1(|sinnA|+|cosnA|),
(1)求A;  
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.實(shí)數(shù)x、y滿足約束條件$\left\{\begin{array}{l}x+y≤4\\ x+2y≤6\\ x≥0\\ y≥0\end{array}\right.$,則目標(biāo)函數(shù)k=2x+3y的最大值為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案