【題目】已知三棱錐中,側(cè)面底面,,則三棱錐外接球的體積為( )
A. B. C. D.
【答案】B
【解析】分析:由幾何關(guān)系首先求得外接球的半徑,然后利用球的體積公式求解體積的大小即可.
詳解:如圖取BC的中點(diǎn)為D,
顯然三棱錐P-ABC的外接球的球心O一定在過點(diǎn)D,且垂直于面ABC的垂線DO上.
設(shè)OD=h,在△PAC中,AC=4,PA=,PC=,
利用余弦定理得cos∠PCA=.
在△PAC中過P作PH⊥AC,所以PH⊥平面ABC,易求PH=CH=1.
在△CDH中,CH=1,CD=,,
以DO與DH為鄰邊作矩形DOGH,
因?yàn)槿忮FP-ABC的外接球的球心為O,
所以OP=OB,OP2=(h+1)2+5,OB2=()2+h2,
那么,解得OD=h=1,
可得外接球的半徑OB=3,.
本題選擇B選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)當(dāng)時(shí),若對(duì)任意都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推導(dǎo)球的體積公式,劉徽制造了一個(gè)牟合方蓋(在一個(gè)正方體內(nèi)作兩個(gè)互相垂直的內(nèi)切圓柱,這兩個(gè)圓柱的公共部分叫做牟合方蓋),但沒有得到牟合方蓋的體積.200年后,祖暅給出牟合方蓋的體積計(jì)算方法,其核心過程被后人稱為祖暅原理:緣冪勢(shì)既同,則積不容異.意思是,夾在兩個(gè)平行平面間的兩個(gè)幾何體被平行于這兩個(gè)平行平面的任意平面所截,如果截面的面積總相等,那么這兩個(gè)幾何體的體積也相等.現(xiàn)在截取牟合方蓋的八分之一,它的外切正方體的棱長(zhǎng)為1,如圖所示,根據(jù)以上信息,則該牟合方蓋的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國(guó)互聯(lián)網(wǎng)信息技術(shù)的發(fā)展,網(wǎng)絡(luò)購(gòu)物已經(jīng)成為許多人消費(fèi)的一種重要方式,某市為了了解本市市民的網(wǎng)絡(luò)購(gòu)物情況,特委托一家網(wǎng)絡(luò)公示進(jìn)行了網(wǎng)絡(luò)問卷調(diào)查,并從參與調(diào)查的10000名網(wǎng)民中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到了下表所示數(shù)據(jù):
經(jīng)常進(jìn)行網(wǎng)絡(luò)購(gòu)物 | 偶爾或從不進(jìn)行網(wǎng)絡(luò)購(gòu)物 | 合計(jì) | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計(jì) | 110 | 90 | 200 |
(1)依據(jù)上述數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為該市市民進(jìn)行網(wǎng)絡(luò)購(gòu)物的情況與性別有關(guān)?
(2)現(xiàn)從所抽取的女性網(wǎng)民中利用分層抽樣的方法再抽取人,從這人中隨機(jī)選出人贈(zèng)送網(wǎng)絡(luò)優(yōu)惠券,求出選出的人中至少有兩人是經(jīng)常進(jìn)行網(wǎng)絡(luò)購(gòu)物的概率;
(3)將頻率視為概率,從該市所有的參與調(diào)查的網(wǎng)民中隨機(jī)抽取人贈(zèng)送禮物,記經(jīng)常進(jìn)行網(wǎng)絡(luò)購(gòu)物的人數(shù)為,求的期望和方差.
附:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí), f(x)=-x+1
(1)求f(0),f(2);
(2)求函數(shù)f(x)的解析式;
(3)若f(a-1)<3,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日,在韓國(guó)平昌冬奧會(huì)短道速滑男子米比賽中,中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造了中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動(dòng)員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個(gè)直道與彎道的交接口.已知某男子速滑運(yùn)動(dòng)員順利通過每個(gè)交接口的概率均為,摔倒的概率均為.假定運(yùn)動(dòng)員只有在摔倒或到達(dá)終點(diǎn)時(shí)才停止滑行,現(xiàn)在用表示該運(yùn)動(dòng)員滑行最后一圈時(shí)在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).
(1)求該運(yùn)動(dòng)員停止滑行時(shí)恰好已順利通過個(gè)交接口的概率;
(2)求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)過作斜率分別為的兩條直線,分別交橢圓于點(diǎn),且,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)若的解集為,且方程有兩個(gè)相等的根,求解析式;
(2)若,且對(duì)任意實(shí)數(shù)均有成立,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com