18.已知函數(shù)f(x)=x2+ax與g(x)=ln(x+1)在原點(diǎn)處有公共的切線.
(1)求實(shí)數(shù)a的值;
(2)求h(x)=f(x)-g(x)的極植.

分析 (1)求出函數(shù)的導(dǎo)數(shù),得到f′(0)=g′(0),解出即可;(2)求出h(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.

解答 解:(1)f′(x)=2x+a,g′(x)=$\frac{1}{x+1}$,
由題意得:f′(0)=g′(0),解得:a=1;
(2)h(x)=f(x)-g(x),
h′(x)=2x+1-$\frac{1}{x+1}$=$\frac{{2x}^{2}+3x}{x+1}$,(x>-1),
令h′(x)>0,解得:x>0,令h′(x)<0,解得:x<0,
∴h(x)在(-1,0)遞減,在(0,+∞)遞增,
∴h(x)極小值=h(0)=0.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用于,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)A={x|x2+mx+1=0},若A∩{x|x>0}=∅,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}的前n項(xiàng)的和Sn滿足Sn=2n-1(n∈N*),則數(shù)列{anan+1}的前n項(xiàng)的和為$\frac{{2}^{2n+1}-2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=lnx+x2+ax,x=1是函數(shù)f(x)的極值點(diǎn).
(1)求實(shí)數(shù)a的值,并求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)函數(shù)g(x)=f(x)-x2+3x,求證:當(dāng)x≥2時(shí),g(x)<$\frac{1}{4}$(x2-1);
(3)在(2)的條件下,求證:對(duì)n∈N*,$\sum_{k=2}^{n+1}$$\frac{1}{g(k)}$>$\frac{3{n}^{2}+5n}{(n+1)(n+2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x-ax2-ln(x+1),其中a∈R.
(1)若x=2是f(x)的極值點(diǎn),求a的值;
(2)若f(x)在[0,+∞)上的最大值是0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點(diǎn)M(1,4),且在x=-2取得極值.
(1)求實(shí)數(shù)a,b的值;
(2)若函數(shù)f(x)在區(qū)間(m,m+1)上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(理科)設(shè)函數(shù)f(x)=x(ex-1)-ax2(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若a=$\frac{1}{2}$,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在(-1,0)無極值,求a的取值范圍;
(Ⅲ)設(shè)n∈N*,x>0,求證:ex>1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{n}}{n!}$.注:n!=n×(n-1)×…×2×1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x}{4}$+$\frac{a}{x}$-lnx-$\frac{3}{2}$,其中a∈R,x=5是函數(shù)y=f(x)的一個(gè)極值點(diǎn)
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+1有兩個(gè)極值點(diǎn),則a的取值范圍為(0,$\frac{1}{e}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案