分析 (1)利用$f(x)=\overrightarrow m•\overrightarrow n$,結(jié)合兩角和與差的三角函數(shù)化簡函數(shù)的解析式,求解函數(shù)的周期,得到函數(shù)的解析式,利用子線盒的單調(diào)性求解單調(diào)增區(qū)間.
(2)利用條件求出$sin({θ+\frac{π}{3}})=\frac{3}{5}$,得到$cos(θ+\frac{π}{3})$,通過二倍角公式求解即可.
解答 (本小題滿分14分)
解:(1)∵$\overrightarrow m=({sinωx,-1})$,$\overrightarrow n=({1,-\sqrt{3}cosωx})$(其中x∈R,ω>0),$f(x)=\overrightarrow m•\overrightarrow n$,
∴$f(x)=sinωx+\sqrt{3}cosωx=2sin({ωx+\frac{π}{3}})$,…(2分)
又∵函數(shù)f(x)圖象的某個最高點(diǎn)到其相鄰的最低點(diǎn)之間的距離為5,
∴$\sqrt{{4^2}+{{({\frac{T}{2}})}^2}}=5$,解之得:T=6,…(4分)
又$T=\frac{2π}{ω}$,則$ω=\frac{2π}{T}=\frac{π}{3}$,即$f(x)=2sin({\frac{π}{3}x+\frac{π}{3}})$,…(6分)
則$2kπ-\frac{π}{2}≤\frac{π}{3}x+\frac{π}{3}≤2kπ+\frac{π}{2}$,
即$6k-\frac{5}{2}≤x≤6k+\frac{1}{2}({k∈Z})$,
即所求函數(shù)f(x)的單調(diào)遞增區(qū)間為$[{6k-\frac{5}{2},6k+\frac{1}{2}}]({k∈Z})$…(8分)
(2)由(1)可知$f(x)=2sin({\frac{π}{3}x+\frac{π}{3}})$,
則$f({\frac{3θ}{π}})=2sin({\frac{π}{3}•\frac{3θ}{π}+\frac{π}{3}})=2sin({θ+\frac{π}{3}})=\frac{6}{5}$,
即$sin({θ+\frac{π}{3}})=\frac{3}{5}$…(10分)
∵$θ∈({-\frac{5π}{6},\frac{π}{6}})$,∴$θ+\frac{π}{3}∈({-\frac{π}{2},\frac{π}{2}})$,則$cos({θ+\frac{π}{3}})>0$
即$cos({θ+\frac{π}{3}})=\sqrt{1-{{sin}^2}({θ+\frac{π}{3}})}=\frac{4}{5}$,…(12分)
也即$f({\frac{6θ}{π}+1})=2sin[{\frac{π}{3}({\frac{6θ}{π}+1})+\frac{π}{3}}]=2sin[{2({θ+\frac{π}{3}})}]$=$4sin({θ+\frac{π}{3}})cos({θ+\frac{π}{3}})=\frac{48}{25}$…(14分)
點(diǎn)評 本題考查三角函數(shù)的化簡求值,斜率的數(shù)量積的應(yīng)用,兩角和與差的三角函數(shù),考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36 | B. | 27 | C. | 22 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{23}{3}$ | B. | $\frac{22}{3}$ | C. | $\frac{47}{6}$ | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲停車時長 (小時) | (0,1] | (1,2] | (2,3] | (3,4] |
甲停車費(fèi)a (元) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com