20.若不等式x2+mx+1≥0的解集為R,則實數(shù)m的取值范圍是-2≤m≤2.

分析 不等式x2+mx+1≥0的解集為R,△≤0,列出不等式求解即可.

解答 解:不等式x2+mx+1≥0的解集為R,
則△=m2-4≤0,
解得-2≤m≤2,
∴實數(shù)m的取值范圍是-2≤m≤2.
故答案為:-2≤m≤2.

點評 本題考查了一元二次不等式恒成立問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2+2ax+2.
(1)若函數(shù)f(x)在R上是偶函數(shù),求a的值 
(2)當a=-1時,求函數(shù)f(x)在[-5,5]上的最值;
(3)若y=f(x)在區(qū)間[-5,5]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)y=ex+mx(x∈R)有極值,則實數(shù)m的取值范圍是( 。
A.(0,+∞)B.(-∞,0)C.(1,0)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.極坐標系中,過點P(1,π)且傾斜角為$\frac{π}{4}$的直線方程為( 。
A.ρ=sin θ+cos θB.ρ=sin θ-cos θC.ρ=$\frac{1}{sinθ+cosθ}$D.ρ=$\frac{1}{sinθ-cosθ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,已知AB=3,AC=6,BC=7,AD是∠BAC平分線.
(1)求證:DC=2BD;
(2)求$\overrightarrow{AB}$$•\overrightarrow{DC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,過點P(0,2)的直線l與橢圓$C:\frac{x^2}{4}+{y^2}=1$相交于A,B兩點,過點B作x軸的平行線交橢圓于D點.
(1)求證:直線AD過定點M并求點M的坐標;
(2)求三角形ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.集合S={x||x-2|>3},T={x|a<x<a+8},S∪T=R,則a的取值范圍是(-3,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法錯誤的是( 。
①命題p:?x>2,2x-3>0的否定是?x0>2,2${\;}^{{x}_{0}}$-3≤0;
②已知復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若(z+2$\overline{z}$)(1-2i)=3-4i(i為虛數(shù)單位),則在復(fù)平面內(nèi),復(fù)數(shù)z所對應(yīng)的點位于第四象限;
③已知x.y∈R,且2x+3y>2-y+3-x,則x-y<0;
④若$\overrightarrow{a}$=(λ,-2),$\overrightarrow$=(-3,5),且$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角,則λ的取值范圍是λ∈(-$\frac{10}{3}$,+∞);
⑤設(shè)函數(shù)f(x)=$\sqrt{3}$sin$\frac{πx}{m}$,若存在f(x)的極值點x0滿足x02+[f(x0)]2<m2,則m的取值范圍是(-∞,-2)∪(2,∞).
A.①②B.②③C.③④D.④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知圓的極坐標方程為ρ=2cosθ-2sinθ,則圓的半徑為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案