分析 設(shè)出復(fù)數(shù)z,利用已知求得z.
(1)由z對(duì)應(yīng)的點(diǎn)在第三象限,求得具體復(fù)數(shù)z;
(2)把對(duì)應(yīng)的點(diǎn)在第一象限的z求出,代入f(n)=($\frac{z}{\overline{z}}$)2n+($\frac{\overline{z}}{z}$)2n,然后分n為奇數(shù)和偶數(shù)得答案.
解答 解:設(shè)z=x+yi(x,y∈R),
由|z|=$\sqrt{2}$,z2的虛部為2,得$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2}\\{2xy=2}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$.
(1)若z對(duì)應(yīng)的點(diǎn)在第三象限,則復(fù)數(shù)z=-1-i;
(2)若z對(duì)應(yīng)的點(diǎn)在第一象限,則z=1+i,$\overline{z}$=1-i,
∴$\frac{z}{\overline{z}}=\frac{1+i}{1-i}=\frac{(1+i)^{2}}{(1-i)(1+i)}=i$,$\frac{\overline{z}}{z}$=$\frac{1-i}{1+i}=\frac{(1-i)^{2}}{(1+i)(1-i)}=-i$,
則f(n)=($\frac{z}{\overline{z}}$)2n+($\frac{\overline{z}}{z}$)2n =i2n+(-i)2n=2•(-1)n.
當(dāng)n為奇數(shù)時(shí),f(n)=-2;
當(dāng)n為偶數(shù)時(shí),f(n)=2.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的混合運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)的計(jì)算題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相交 | B. | 內(nèi)切 | C. | 外切 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com