10.求兩條平行直線5x+2y-5=0和10x+4y+35=0之間的距離.

分析 根據(jù)題意,將直線5x+2y-5=0變形為10x+4y-10=0,利用平行線間的距離公式計算可得答案.

解答 解:根據(jù)題意,直線5x+2y-5=0可以變形為10x+4y-10=0,
兩直線間的距離d=$\frac{|35-(-10)|}{\sqrt{1{0}^{2}+{4}^{2}}}$=$\frac{45\sqrt{29}}{58}$;
故兩條平行直線5x+2y-5=0和10x+4y+35=0之間的距離為$\frac{45\sqrt{29}}{58}$.

點(diǎn)評 本題考查平行線間的距離公式的計算,注意公式運(yùn)用的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若集合A={x|x2-4x≤0},B={x|x2-2x>0},則A∩B=(2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.三角形ABC中,a(cosB+cosC)=b+c,
(1)求證A=$\frac{π}{2}$
(2)若三角形ABC的外接圓半徑為1,求三角形ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且cosB=$\frac{3}{5}$,cosC=$\frac{5}{13}$,c=3,則a=$\frac{14}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知平面向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$滿足<$\overrightarrow{a}$,$\overrightarrow$>=60°,且{|$\overrightarrow{a}$|,|$\overrightarrow$|,|$\overrightarrow{c}$|}={1,2,3},則|$\overrightarrow{a}+\overrightarrow+\overrightarrow{c}$|的最大值是(  )
A.$\sqrt{7}+3$B.$\sqrt{19}+1$C.$\sqrt{13}+2$D.$\sqrt{15}+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.過拋物線y2=2px定點(diǎn)(p>0)上一定點(diǎn)P(x0,y0)(y0≠0)分別作斜率為k和-k的直線l1,l2,設(shè)l1,l2分別與拋物線y2=2px交于A,B兩點(diǎn),證明:直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=3kx3+$\frac{2}{x}$-2(k∈R),f(lg7)=1(k∈R),則f(lg$\frac{1}{7}$)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求證:1+cosα+2$si{n}^{2}\frac{α}{2}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若k為整數(shù),則cos(kπ+$\frac{π}{3}$)的值為( 。
A.±$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案