14.下列命題中,真命題的是( 。
A.?x>0,2x>x2B.?x0∈R,e${\;}^{{x}_{0}}$≤0
C.“a>b“是“ac2>bc2”的充要條件D.“ab>1”是“a>1,b>1”的必要條件

分析 根據(jù)含有量詞的命題的定義進(jìn)行判斷即可.

解答 解:A.若x=3,則23=8,32=9,此時(shí)2x>x2不成立,故A錯(cuò)誤,
B.∵?x∈R,ex>0,∴?x0∈R,e${\;}^{{x}_{0}}$≤0不成立,故B錯(cuò)誤,
C.當(dāng)c=0,當(dāng)a>b時(shí),“ac2>bc2”不成立,即“a>b“是“ac2>bc2”的充要條件錯(cuò)誤,故C錯(cuò)誤,
D.當(dāng)a>1,b>1時(shí),ab>1成立,即“ab>1”是“a>1,b>1”的必要條件成立,故D正確,
故選:D

點(diǎn)評(píng) 本題主要考查含有量詞的命題的判斷,根據(jù)特稱(chēng)命題和全稱(chēng)命題的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=loga$\frac{λx-2}{x+2}$為奇函數(shù)(其中a>0且a≠1,λ為常數(shù)).
(1)求出λ的值;
(2)設(shè)g(x)=log${\;}_{\frac{1}{2}}$($\frac{λx-2}{x+2}$•$\frac{1}{x-4}$)(x>5),求g(x)的值域;
(3)設(shè)φ(x)=loga$\frac{λx-2}{x+2}$是定義域[m,n]上的單調(diào)遞增減函數(shù),其值域?yàn)閇logaa(n-1),logaa(m-1)],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若點(diǎn)P是曲線(xiàn)y2=4x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(0,1)的距離與點(diǎn)P到y(tǒng)軸的距離之和的最小值為( 。
A.$\sqrt{2}$B.$\sqrt{2}-1$C.$\sqrt{2}+1$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)f(x)=x2-mx+3在R上存在零點(diǎn),則實(shí)數(shù)m的取值范圍是m≥2$\sqrt{3}$或m≤-2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.給出以下命題:
(1)函數(shù)f(x)=$\sqrt{{x}^{2}}$與函數(shù)g(x)=|x|是同一個(gè)函數(shù);
(2)函數(shù)f(x)=ax+1(a>0且a≠1)的圖象恒過(guò)定點(diǎn)(0,1);
(3)設(shè)指數(shù)函數(shù)f(x)的圖象如圖所示,若關(guān)于x的方程f(x)=$\frac{m-1}{m+1}$有負(fù)數(shù)根,則實(shí)數(shù)m的取值范圍是(1,+∞);
(4)若f(x)=$\left\{\begin{array}{l}{{2}^{x}+t(x≥0)}\\{g(x)(x<0)}\end{array}\right.$為奇函數(shù),則f(f(-2))=-7;
(5)設(shè)集合M={m|函數(shù)f(x)=x2-mx+2m的零點(diǎn)為整數(shù),m∈R},則M的所有元素之和為15.
其中所有正確命題的序號(hào)為( 。
A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5)D.(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a=$\sqrt{3}$,且a2=b2+c2-bc,則△ABC的面積S的最大值為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的圖象如圖所示,若函數(shù)g(x)=3[f(x)]3-4f(x)+m在x$∈[-\frac{π}{2},\frac{π}{2}]$上有4個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是[$\frac{13}{8}$,$\frac{16}{9}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)向量$\overrightarrow{a}$=(3cosx,1),$\overrightarrow$=(5sinx+1,cosx),且$\overrightarrow{a}$∥$\overrightarrow$,則cos2x=$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=-12,a7=-4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn及其最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案