2.若函數(shù)f(x)=x2-mx+3在R上存在零點(diǎn),則實(shí)數(shù)m的取值范圍是m≥2$\sqrt{3}$或m≤-2$\sqrt{3}$.

分析 可轉(zhuǎn)化為x2-mx+3=0有解,從而解得.

解答 解:∵函數(shù)f(x)=x2-mx+3在R上存在零點(diǎn),
∴x2-mx+3=0有解,
∴△=m2-4×3≥0,
解得,m≥2$\sqrt{3}$或m≤-2$\sqrt{3}$,
故答案為:m≥2$\sqrt{3}$或m≤-2$\sqrt{3}$.

點(diǎn)評 本題考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系應(yīng)用及一元二次不等式的解法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在長方體ABCD-A1B1C1D1中,二面角D-AB-D1的大小為45°,DC1與平面ABCD所成角的大小為30°,那么異面直線AD1與DC1所成角的余弦值是( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{2}}}{4}$C.$\frac{{\sqrt{2}}}{8}$D.$\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)為偶函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=log2x,則f($-\sqrt{2}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-x(x≥0)}\\{{x}^{2}-x(x<0)}\end{array}\right.$,對于任意x∈[1,+∞),不等式f(a2-ex-1)>f(2x2-2a)恒成立,則實(shí)數(shù)a的取值范圍為(-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.把5張分別寫有數(shù)字1,2,3,4,5的卡片混合,再將其任意排成一行,則得到的數(shù)能被2或5整除的概率是( 。
A.0.2B.0.4C.0.6D.0.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=x2-1(2<x<3)的反函數(shù)為( 。
A.f-1(x)=$\sqrt{x-1}$(3<x<8)B.f-1(x)=$\sqrt{x+1}$(3<x<8)C.f-1(x)=$\sqrt{x-1}$(4<x<9)D.f-1(x)=$\sqrt{x+1}$(4<x<9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中,真命題的是( 。
A.?x>0,2x>x2B.?x0∈R,e${\;}^{{x}_{0}}$≤0
C.“a>b“是“ac2>bc2”的充要條件D.“ab>1”是“a>1,b>1”的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知冪函數(shù)f(x)的圖象過點(diǎn)(4,$\frac{1}{2}$),則f(8)的值為( 。
A.$\frac{\sqrt{2}}{4}$B.64C.2$\sqrt{2}$D.$\frac{1}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知a=2$\sqrt{3}$,b=2$\sqrt{2}$,B=45°,則A等于( 。
A.30°或150°B.60°C.60°或120°D.30°

查看答案和解析>>

同步練習(xí)冊答案