分析 由$\overrightarrow{EF}$=$\overrightarrow{EA}$+$\overrightarrow{AB}$+$\overrightarrow{BF}$,兩邊平方即可解得線段AB的長.
解答 解:如圖,由$\overrightarrow{EF}$=$\overrightarrow{EA}$+$\overrightarrow{AB}$+$\overrightarrow{BF}$,得
由$\overrightarrow{EF}$2=$\overrightarrow{EA}$2+$\overrightarrow{AB}$2+$\overrightarrow{BF}$2+2|$\overrightarrow{EA}$||$\overrightarrow{BF}$|cosθ
①當(dāng)θ=60°時,有9=4+$\overrightarrow{AB}$2+1+2•2•$\frac{1}{2}$,得|$\overrightarrow{AB}$|=$\sqrt{2}$;
②當(dāng)θ=120°時,有9=4+$\overrightarrow{AB}$2+1-2•2•$\frac{1}{2}$,得|$\overrightarrow{AB}$|=$\sqrt{6}$.
∴線段AB的長為$\sqrt{2}$或$\sqrt{6}$.
故答案為:$\sqrt{2}$或$\sqrt{6}$.
點(diǎn)評 本題考慮到若用前兩種方法都難以奏效,于是選用了“回路法”,更方便了“異面直線a,b所成的角為60°”的討論與運(yùn)用,使得解題快捷無比.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,7),(5,2) | B. | (-1,7),(-5,2) | C. | (1,4),(5,2) | D. | (-1,4),(-5,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | -$\sqrt{2}$ | 2 | $\sqrt{6}$ | 9 |
y | $\sqrt{3}$ | -$\sqrt{2}$ | -1 | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com