分析 (1)由底面ABCD是菱形,可得OA=OC,利用三角形的中位線定理可得OE∥PC,再利用線面平行的判定定理即可證明PC∥平面EBD.
(2)在底面作OH⊥BC,垂足為H,根據(jù)OE∥平面PBC可知點(diǎn)E到平面PBC的距離就是點(diǎn)O到平面PBC的距離OH,求出OH即可求出點(diǎn)E到平面PBC的距離.
解答 (1)證明:∵底面ABCD是菱形,
∴OA=OC,
又∵E為PA的中點(diǎn),∴EO∥PC,
而PC?平面BED,EO?平面BED,
∴PC∥平面EBD.
(2)解:在底面作OH⊥BC,垂足為H,
因?yàn)槠矫鍼CB⊥平面ABCD,
所以O(shè)H⊥平面PCB,
又因?yàn)镺E∥PC,
所以O(shè)E∥平面PBC,
所以點(diǎn)E到平面PBC的距離就是點(diǎn)O到平面PBC的距離OH,解得OH=$\frac{\sqrt{3}}{4}$a.
點(diǎn)評(píng) 本題考查了菱形的性質(zhì)、三角形的中位線定理、線面平行的判定定理、線面垂直與面面垂直的判定性質(zhì)定理,考查了了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 存在α,使得BA′⊥面A′DE | B. | 存在α,使得BA′⊥面A′CD | ||
C. | 存在α,使得EA′⊥面A′CD | D. | 存在α,使得EA′⊥面A′BC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com