16.已知數(shù)列{an}的首項a1=1,且an+1=2an+1,則這個數(shù)列的第五項為(  )
A.31B.15C.11D.9

分析 通過對an+1=2an+1變形可知an+1+1=2(an+1),進(jìn)而可知數(shù)列{an+1}是首項、公比均為2的等比數(shù)列,計算即得結(jié)論.

解答 解:∵an+1=2an+1,
∴an+1+1=2(an+1),
又∵a1+1=1+1=2,
∴數(shù)列{an+1}是首項、公比均為2的等比數(shù)列,
∴an+1=2n
∴${a}_{n}={2}^{n}-1$,
∴a5=25-1=31,
故選:A.

點(diǎn)評 本題考查數(shù)列的通項,對表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{1}{1+i}+{i^3}$所對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.集合A={1,2}的非空真子集個數(shù)為(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.記x=log34•log56•log78,y=log45•log67•log89,則(  )
A.x$<y<\sqrt{2}$B.$\sqrt{2}$<x<yC.y$<\sqrt{2}$<xD.$\sqrt{2}$<y<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列滿足:a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+2}$(n∈N*),若bn+1=(n-λ)($\frac{1}{{a}_{n}}$+1),b1=-6,且遞增數(shù)列,則實數(shù)λ的取值范圍為λ<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列{an}中,a1=2,且(n+1)an-(n-1)an-1=0(n≥2),則an=$\frac{4}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={-2,0,1,3},在平面直角坐標(biāo)系中,點(diǎn)M(x,y)的坐標(biāo)x∈A,y∈A
(1)求點(diǎn)M在x軸上的概率;
(2)求點(diǎn)M滿足y2<4x的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=a•2x+b的圖象過點(diǎn)A(1,$\frac{3}{2}$),B(2,$\frac{5}{2}$).
(1)求函數(shù)y=f(x)的反函數(shù)y=f-1(x)的解析式;
(2)若F(x)=f-1(2x-1)-log${\;}_{\frac{1}{2}}$f(x),求使得F(x)≤0的x取值范圍;
(3)記an=2${\;}^{{f}^{-1}(n)}$(n∈N*),是否存在正數(shù)k,使得(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)…(1+$\frac{1}{{a}_{n}}$)≥k$\sqrt{2n+1}$對n∈N*均成立?若存在,求出k的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|2x2-x-1≤0},集合B={x|y=$\frac{2ln({3}^{x}-1)}{(x-1)^{2}}$},則A∩B=( 。
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案