4.記x=log34•log56•log78,y=log45•log67•log89,則( 。
A.x$<y<\sqrt{2}$B.$\sqrt{2}$<x<yC.y$<\sqrt{2}$<xD.$\sqrt{2}$<y<x

分析 利用換底公式化簡x,y,判斷大小即可.

解答 解:x=log34•log56•log78,
y=log45•log67•log89=$\frac{2lg5lg7lg3}{lg4lg6lg8}$=$\frac{2}{{log}_{3}4{log}_{5}6{log}_{7}8}$=$\frac{2}{x}$,
即xy=2.
∵lg3lg5$<({\frac{lg3+lg5}{2})}^{2}$=${(\frac{lg15}{2})}^{2}$$<{(\frac{lg16}{2})}^{2}$=lg4lg4.∴$\frac{lg4lh4}{lg3lg5}$=$\frac{{log}_{3}4}{{log}_{4}5}$>1,
即log34>log45,同理log56>log67,log78>log89,
∴x>y,又xy=2,
∴y$<\sqrt{2}$<x.
故選:C.

點評 本題考查對數(shù)的運算法則以及對數(shù)值的大小比較,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知α是三角形的內(nèi)角,且sinαcosα=$\frac{1}{8}$,則cosα+sinα的值等于( 。
A.±$\frac{5}{4}$B.±$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.-$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)$f(x)=\frac{{\sqrt{3x-{x^2}}}}{x-2}$的定義域為[0,2)∪(2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)f(x)為奇函數(shù),且在(-∞,0)內(nèi)是減函數(shù),f(-2)=0,則f(x)<0的解集為( 。
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知實數(shù)a,b滿足a≥b>0,則($\frac{1+3a}{1+a}$)2+($\frac{4+b}{1+b}$)2的最小值為$\frac{121}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線的中心在原點,焦點在坐標(biāo)軸上,一條漸近線的方程為x+$\sqrt{3}$y=0.且焦點到相應(yīng)準(zhǔn)線的距離為$\frac{\sqrt{3}}{2}$,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}的首項a1=1,且an+1=2an+1,則這個數(shù)列的第五項為( 。
A.31B.15C.11D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(m-3)x+4m,x≥0}\\{{m}^{x},x<0}\end{array}$,若對任意實數(shù)a≠b都有$\frac{f(a)-f(b)}{a-b}$<0,則實數(shù)m的取值范圍是( 。
A.0<m<1B.0<m≤$\frac{1}{4}$C.$\frac{1}{4}$≤m<1D.m<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題p:方程x2+mx+1=0有兩個不等的負(fù)實根,q:方程4x2+4(m-2)x+1=0無實根.若命題“p∧q”與命題“¬q”都是假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案