A. | f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$) | B. | f($\frac{π}{3}$)>2cos1•f(1) | C. | f($\frac{π}{4}$)<2cos1•f(1) | D. | f($\frac{π}{4}$)<$\frac{\sqrt{6}}{2}$f($\frac{π}{6}$) |
分析 由題意可判斷f(x)cosx在(0,$\frac{π}{2}$)上是增函數(shù),從而依次判斷不等式即可.
解答 解:∵對(duì)任意x∈(0,$\frac{π}{2}$),不等式tanx•f(x)<f′(x)恒成立,
∴對(duì)任意x∈(0,$\frac{π}{2}$),不等式$\frac{sinx}{cosx}$•f(x)-f′(x)<0恒成立,
∴對(duì)任意x∈(0,$\frac{π}{2}$),不等式sinx•f(x)-cosxf′(x)<0恒成立,
又∵(f(x)cosx)′=cosxf′(x)-sinx•f(x),
∴對(duì)任意x∈(0,$\frac{π}{2}$),不等式(f(x)cosx)′>0恒成立,
∴f(x)cosx在(0,$\frac{π}{2}$)上是增函數(shù),
∴cos$\frac{π}{3}$f($\frac{π}{3}$)>cos$\frac{π}{4}$f($\frac{π}{4}$),
即f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$),故A正確;
cos$\frac{π}{3}$f($\frac{π}{3}$)>cos1f(1),
即f($\frac{π}{3}$)>2cos1f(1),故B正確;
cos1f(1)>cos$\frac{π}{4}$f($\frac{π}{4}$),
即f($\frac{π}{4}$)<$\sqrt{2}$cos1•f(1)<2cos1•f(1),故C正確;
cos$\frac{π}{4}$f($\frac{π}{4}$)>cos$\frac{π}{6}$f($\frac{π}{6}$),
即f($\frac{π}{4}$)<$\frac{\sqrt{6}}{2}$f($\frac{π}{6}$),故D錯(cuò)誤;
故選:D.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及函數(shù)的單調(diào)性的判斷與應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1條 | B. | 2條 | C. | 4條 | D. | 8條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率 |
1 | 不超過(guò)500元的部分 | 5% |
2 | 超過(guò)500元至2000元的部分 | 10% |
3 | 超過(guò)2000元至5000元的部分 | 15% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com