3.解下列不等式,并將結(jié)果用集合和區(qū)間兩種形式表示:-x2+2x-3>0.

分析 -x2+2x-3>0.化為:(x-1)2+2<0,解出即可.

解答 解:-x2+2x-3>0.化為:x2-2x+3<0.即(x-1)2+2<0,
解得x∈∅.
∴原不等式的解集為:∅.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.對(duì)任意x∈(0,$\frac{π}{2}$),不等式tanx•f(x)<f′(x)恒成立,則下列不等式錯(cuò)誤的是( 。
A.f($\frac{π}{3}$)>$\sqrt{2}$f($\frac{π}{4}$)B.f($\frac{π}{3}$)>2cos1•f(1)C.f($\frac{π}{4}$)<2cos1•f(1)D.f($\frac{π}{4}$)<$\frac{\sqrt{6}}{2}$f($\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.命題p:?x∈R,|x-1|+|x+1|≥a,命題q:?x∈R,使得不等式log2(x2-2x+17)<a有解,命題p,q有且僅有一個(gè)命題成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.解不等式:log4(3x-2)<log2(x-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知,a,b,c(a>b>c)是△ABC的角A,B,C的對(duì)邊,若4sin2(B+C)-3=0,則$\frac{asin(\frac{π}{6}-C)}{b-c}$的值為(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.等比數(shù)列1,-$\frac{1}{3}$,$\frac{1}{9}$,-$\frac{1}{27}$,…的第3項(xiàng)到第7項(xiàng)的和是$\frac{61}{729}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.請(qǐng)?jiān)凇俺浞植槐匾薄氨匾怀浞帧薄俺湟薄凹炔怀浞忠膊槐匾敝羞x擇一個(gè)使命題正確的填寫(xiě)到下面各題的橫線上.
(1)若A⊆B,則“x∈A”是“x∈B”的充分不必要條件;
(2)“x=$\frac{π}{6}$”是“sinx=$\frac{1}{2}$”的充分不必要條件;
(3)“α>β”是“sinα>sinβ”的既不充分也不必要條件;
(4)在△ABC中,“A>B”是“sinA>sinB”的充要條件;
(5)已知直線l1:y=k1x+b1,l2:y=k2x+b2,則“k1=k2”是“l(fā)1∥l2”的必要不充分條件;
(6)“ab>0”是“方程$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}$=1表示橢圓”的既不充分也不必要條件;
(7)“a是第二象限角”是“sinα•tanα<0”的充分不必要條件;
(8)“|a|=|b|”是“a=b”的必要不充分條件;
(9)“實(shí)數(shù)λ=0”是“向量λ$\overrightarrow{a}$=0”的充分不必要條件;
(10)“四邊形的兩條對(duì)角線相等”是“四邊形是等腰梯形”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={x|x2-2x+1<a2},B={x|-1<x<2},若A⊆B,則正實(shí)數(shù)a的取值范圍為( 。
A.(1,+∞)B.(1,2]C.(0,1]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知$\overrightarrow a=(-3,2),\overrightarrow b=(-1,-1)$,向量λ$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-2\overrightarrow b$垂直,則實(shí)數(shù)λ的值為( 。
A.$-\frac{1}{2}$B.$\frac{3}{11}$C.$\frac{1}{6}$D.$\frac{1}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案