分析 利用兩角和的正切函數(shù)求出正切函數(shù)值,然后化簡(jiǎn)所求的表達(dá)式為正切函數(shù)的形式,即可求出結(jié)果.
解答 解:$tan({\frac{3π}{4}+α})=3$,
可得$\frac{tan\frac{3π}{4}+tanα}{1-tan\frac{3π}{4}tanα}$=3.
即:$\frac{-1+tanα}{1+tanα}$=3,
解得tanα=-2.
$\frac{sinα}{{{{cos}^3}α}}$=$\frac{{sin}^{3}α+sin{αcos}^{2}α}{{cos}^{3}α}$=tan3α+tanα=-8-2=-10.
故答案為:-2;-10;
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,兩角和的正切函數(shù)的應(yīng)用,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-1)-f(2)>0 | B. | f(1)-f(-2)=0 | C. | f(1)-f(2)<0 | D. | f(-1)+f(2)<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$ | B. | $f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$ | ||
C. | $f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$ | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com