分析 由題意可得:a3=a1+2d,a4=a1+3d,結(jié)合a1、a3、a4成等比數(shù)列,得到a1=-4d,進(jìn)而根據(jù)等差數(shù)列的通項(xiàng)公式化簡(jiǎn)所求的式子即可得出答案.
解答 解:設(shè)等差數(shù)列的公差為d(d≠0),首項(xiàng)為a1,
所以a3=a1+2d,a4=a1+3d,
因?yàn)閍1、a3、a4成等比數(shù)列,
所以(a1+2d)2=a1(a1+3d),
解得:a1=-4d,
則$\frac{{{S_3}-{S_2}}}{{{S_5}-{S_3}}}$=$\frac{{S}_{3}-{S}_{2}}{{(S}_{5}-{S}_{4})+({S}_{4}-{S}_{3})}$
=$\frac{{a}_{3}}{{a}_{5}+{a}_{4}}$=$\frac{{a}_{1}+2d}{2{a}_{1}+7d}$=$\frac{-4d+2d}{-8d+7d}$=2.
故答案為:2.
點(diǎn)評(píng) 解決此類問題的關(guān)鍵是熟練掌握等比數(shù)列與等差數(shù)列的性質(zhì),利用性質(zhì)解決問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①②④ | C. | ①②③ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個(gè) | B. | 2個(gè) | C. | 1個(gè) | D. | 0個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f({\frac{π}{3}})>\sqrt{2}f({\frac{π}{4}})$ | B. | $f({\frac{π}{3}})>2cos1•f(1)$ | C. | $f({\frac{π}{4}})<\sqrt{2}cos1•f(1)$ | D. | $f({\frac{π}{4}})<\frac{{\sqrt{6}}}{2}f({\frac{π}{6}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3} | B. | {2,3} | C. | ∅ | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\overrightarrow{a}•\overrightarrow$=0($\overrightarrow{a}$≠0,$\overrightarrow$≠0),則$\overrightarrow{a}⊥\overrightarrow$ | B. | 若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$ | ||
C. | 若ac2>bc2,則a>b | D. | 若α=60°,則cosα=$\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com