4.已知函數(shù)f(x)=ax2+bx+c(a>0),對于任意的x1,x2(x1≠x2),則$f(\frac{{{x_1}+{x_2}}}{2})$與$\frac{{f({x_1})+f({x_2})}}{2}$的大小關系是( 。
A.$f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$B.$f(\frac{{{x_1}+{x_2}}}{2})$>$\frac{{f({x_1})+f({x_2})}}{2}$
C.$f(\frac{{{x_1}+{x_2}}}{2})$=$\frac{{f({x_1})+f({x_2})}}{2}$D.無法確定

分析 分析函數(shù)的凸凹性,可得結(jié)論.

解答 解:∵函數(shù)f(x)=ax2+bx+c(a>0)為凹函數(shù),
故任意的x1,x2(x1≠x2),都有$f(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$,
故選:A.

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.定義運算?,a?b=S的運算原理如偽代碼所示,則式子5?3+2?4=32.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設復數(shù)z=(x-1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為( 。
A.$\frac{3}{4}+\frac{1}{2π}$B.$\frac{1}{4}-\frac{1}{2π}$C.$\frac{1}{2}-\frac{1}{π}$D.$\frac{1}{2}+\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.$tan({\frac{3π}{4}+α})=3$,則tanα=-2,$\frac{sinα}{{{{cos}^3}α}}$=-10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2+bx+c.
(Ⅰ)若f(1)=0,a>b>c.
①求證:f(x)的圖象與x軸有兩個交點;
②設函數(shù)圖象與x軸的兩個交點分別為A、B,求線段AB的取值范圍.
(Ⅱ)若存在x1、x2且x1<x2,f(x1)≠f(x2),試說明方程f(x)=$\frac{f({x}_{1})+f({x}_{2})}{2}$,必有一根在區(qū)間(x1,x2)內(nèi).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{|{{log}_2}x|,}&{(0<x<4)}\\{-\frac{1}{2}x+6,}&{(x≥4)}\end{array}}\right.$,若方程f(x)-k=0有三個不同的解a,b,c,且a<b<c,則ab+c的取值范圍是(11,13).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列四個命題,其中正確命題的個數(shù)( 。
①若a>|b|,則a2>b2
②若a>b,c>d,則a-c>b-d 
③若a>b,c>d,則ac>bd 
④若a>b>o,則$\frac{c}{a}$>$\frac{c}$.
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設全集U={x|x<4,x∈N},A={0,1,2},B={2,3},則B∪∁UA等于( 。
A.{3}B.{2,3}C.D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知sinα=2cosα,求下列各式的值.
(1)sin2α一2cos2α
(2)sin2α+sinαcosα+3.

查看答案和解析>>

同步練習冊答案