10.Sn為數(shù)列{an}的前n項(xiàng)和,已知Sn=n2(n∈N).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=an•2n(n∈N),求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)根據(jù)n≥2時,an=Sn-Sn-1的關(guān)系即可求數(shù)列{an}的通項(xiàng)公式;
(2)求出bn=an•2n(n∈N),利用錯位相減法即可求數(shù)列{bn}的前n項(xiàng)和Tn

解答 解:(1)n≥2時,an=Sn-Sn-1=n2-(n-1)2=2n-1,
 n=1時,a1=S1=1符合上式,
 故an=2n-1(n∈N+);                   
  (2)∵bn=an•2n(n∈N),
∴bn=(2n-1)•2n
則數(shù)列{bn}的前n項(xiàng)和Tn滿足:
Tn=1•2+3•22+5•23+…+(2n-1)•2n,…①
2Tn=1•22+3•23+5•24+…+(2n-1)•2n+1…②
①-②得-Tn=2+2(22+23+…+2n)-(2n-1)•2n+1=2+2•$\frac{4-{2}^{n+1}}{1-2}$-(2n-1)•2n+1=(3-2n)•2n+1-6,
∴Tn=(2n-3)•2n+1+6.

點(diǎn)評 本題主要考查數(shù)列通項(xiàng)公式以及數(shù)列求和的計算,根據(jù)n≥2時,an=Sn-Sn-1的關(guān)系以及利用錯位相減法進(jìn)行求和是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}滿足:a1=1,an+1=$\sqrt{{a}_{n}^{2}-2{a}_{n}+3}$+b(n∈N*).
(1)若b=1,求證數(shù)列{(an-1)2}是等差數(shù)列;
(2)若b=-1,求證:a1+a3+…+a2n-1<$\frac{3n+4}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.五位同學(xué)站成一排照相留念,則在甲乙相鄰的條件下,甲丙也相鄰的概率為( 。
A.$\frac{1}{4}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知θ∈($\frac{π}{4}$,$\frac{π}{2}$),在單位圓中角θ的正弦線、余弦線、正切線的長度分別a,b,c,則它們的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.現(xiàn)有長分別為1m、2m、3m的鋼管各3根(每根鋼管質(zhì)地均勻、粗細(xì)相同附有不同的編號),從中隨機(jī)抽取2根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的鋼管相接焊成筆直的一根.若X表示新焊成的鋼管的長度(焊接誤差不計).
(1)求X的分布列;
(2)若Y=-λ2X+λ+1,E(Y)>1,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.執(zhí)行如圖所示的程序框圖,若輸出的i的值為8,則判斷框內(nèi)實(shí)數(shù)a的取值范圍是[-4,6).(寫成區(qū)間或集合的形式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知方程8x2+6kx+2k+1=0有兩個實(shí)根sinθ和cosθ,則k=-$\frac{10}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.現(xiàn)有語文、數(shù)學(xué)課本共7本(其中語文課本不少于2本),從中任取2本,至多有1本語文課本的概率是$\frac{5}{7}$,則語文課本有( 。
A.2本B.3本C.4本D.5本

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知tanα=$\frac{1}{2}$,tan(α-β)=-$\frac{5}{2}$,則tan(β-2α)的值為( 。
A.-$\frac{3}{4}$B.-$\frac{8}{9}$C.$\frac{3}{4}$D.$\frac{8}{9}$

查看答案和解析>>

同步練習(xí)冊答案