6.已知A(-1,0)和圓x2+y2=2上動(dòng)點(diǎn)P,動(dòng)點(diǎn)M滿足2$\overrightarrow{MA}$=$\overrightarrow{AP}$,則點(diǎn)M的軌跡方程是( 。
A.(x-3)2+y2=1B.(x+$\frac{3}{2}$)2+y2=1C.(x+$\frac{3}{2}$)2+y2=$\frac{1}{2}$D.x2+(y+$\frac{3}{2}$)2=$\frac{1}{2}$

分析 設(shè)出動(dòng)點(diǎn)坐標(biāo),利用向量條件確定坐標(biāo)之間的關(guān)系,利用P在圓上,可得結(jié)論.

解答 解:設(shè)點(diǎn)M的坐標(biāo)為(x,y),點(diǎn)P(m,n),則m2+n2=2 ①.
∵動(dòng)點(diǎn)M滿足2$\overrightarrow{MA}$=$\overrightarrow{AP}$,∴2(-1-x,-y)=(m+1,n)
∴m=-2x-3,n=-2y
代入①,可得(-2x-3)2+(-2y)2=2
∴(x+$\frac{3}{2}$)2+y2=$\frac{1}{2}$
故選:C.

點(diǎn)評(píng) 本題考查點(diǎn)的軌跡方程、相等向量的性質(zhì)、代入法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$) 滿足f(x)≤f($\frac{π}{3}$),則函數(shù)f(x)的單調(diào)遞增區(qū)間是( 。
A.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$](k∈Z)B.[2kπ+$\frac{π}{3}$,2kπ+$\frac{5π}{6}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x>2,函數(shù)$y=\frac{4}{x-2}+x$的最小值是( 。
A.5B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.王師傅要在一個(gè)矩形木板上畫出一個(gè)橢圓(如圖),他準(zhǔn)備了一條長(zhǎng)度等于矩形木板長(zhǎng)邊的細(xì)繩,兩端固定在木板上,用鉛筆尖將繩子拉緊,使筆尖在木板上慢慢移動(dòng)…繩子兩端應(yīng)該固定在圖中的( 。
A.A、BB.C、DC.E、FD.G、H

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=$\frac{lg(2-x)}{\sqrt{12+x-{x}^{2}}}$+(x-1)0的定義域是( 。
A.{x|-3<x<1}B.{x|0<x<2}C.{x|-3<x<2,且x≠1}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.假設(shè)若干個(gè)函數(shù)的圖象經(jīng)過平移后能夠重合,則稱這些函數(shù)為“互為生成函數(shù)”.給出下列函數(shù):
①f(x)=$\sqrt{3}$sinx-cosx;
②f(x)=$\sqrt{2}$(sinx+cosx);
③f(x)=$\sqrt{2}$sinx+2;
④f(x)=2cosx
則其中與其他函數(shù)不屬于“互為生成函數(shù)”的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.冪函數(shù)f(x)的圖象過點(diǎn)$(2,\frac{{\sqrt{2}}}{2})$,則$f(\frac{1}{4})$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l:y=3x+3,試求:
(1)過點(diǎn)P(4,5)與直線l垂直的直線方程;
(2)直線l關(guān)于點(diǎn)A(3,2)對(duì)稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\overrightarrow{OA}$⊥$\overrightarrow{BC}$,$\overrightarrow{OB}$⊥$\overrightarrow{AC}$,求證:$\overrightarrow{OC}$⊥$\overrightarrow{AB}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案