10.已知實(shí)數(shù)x,y滿足x2+y2+2x=0,則x+y的最小值為-$\sqrt{2}$-1.

分析 利用直線與圓相切的充要條件即可得出.

解答 解:∵實(shí)數(shù)x,y滿足x2+y2+2x=0,配方為:(x+1)2+y2=1,圓心為C(-1,0),半徑為r=1.
令x+y=t,則$\frac{|-1-t|}{\sqrt{2}}$≤1,化為:$-\sqrt{2}$-1≤t$≤\sqrt{2}$-1,當(dāng)且僅當(dāng)直線x+y=t與圓相切時(shí)取等號(hào).
則x+y的最小值為-$\sqrt{2}$-1,
故答案為:-$\sqrt{2}$-1.

點(diǎn)評(píng) 本題考查了直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式公式、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若關(guān)于x的實(shí)系數(shù)一元二次方程x2+x+a=0與x2+ax+1=0至少有一個(gè)公共的實(shí)數(shù)根,則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.記n項(xiàng)正項(xiàng)數(shù)列為a1,a2,…,an,其前n項(xiàng)積為Tn,定義lg(T1•T2•…Tn)為“相對(duì)疊乘積”,如果有2013項(xiàng)的正項(xiàng)數(shù)列a1,a2,…,a2013的“相對(duì)疊乘積”為2013,則有2014項(xiàng)的數(shù)列10,a1,a2,…,a2013的“相對(duì)疊乘積”為( 。
A.2014B.2016C.3042D.4027

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足a1=$\frac{3}{2}$且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}\begin{array}{l}{\;}$ (n∈N,n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:當(dāng)n≥2時(shí),$\frac{a_1}{1}$+$\frac{a_2}{2}$+$\frac{a_3}{3}$+…+$\frac{a_n}{n}$-n<$\frac{11}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某中學(xué)對(duì)男女學(xué)生是否喜愛古典音樂進(jìn)行了一個(gè)調(diào)查,調(diào)查者對(duì)學(xué)校高三年級(jí)隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:
喜愛不喜愛總計(jì)
男學(xué)生6080
女學(xué)生
總計(jì)7030
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取5名學(xué)生,再從這5名學(xué)生中隨機(jī)抽取2名學(xué)生去某古典音樂會(huì)的現(xiàn)場(chǎng)觀看演出,求正好有1名男生被抽中的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列函數(shù)中,①y=|x+$\frac{1}{x}$|;②y=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$;③y=log2x+logx2(x>0且≠1);④y=3x+3-x;最小值為2的函數(shù)是①②④(只填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.x>0時(shí),函數(shù)y=x+$\frac{1}{x}$-1的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在某次聯(lián)考測(cè)試中,學(xué)生數(shù)學(xué)成績(jī)X~N(100,σ2)(σ>0),若P(80<X<120)=0.8,則P(0<X<80)等于( 。
A.0.05B.0.1C.0.15D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,焦距為4,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是( 。
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案