2.曲線y=4x-x3,在點(diǎn)(-1,-3)處的切線方程是(  )
A.y=7x+4B.y=x-4C.y=7x+2D.y=x-2

分析 求出函數(shù)的導(dǎo)數(shù),求出切線的斜率,然后求解切線方程.

解答 解:曲線y=4x-x3,可得y′=4-3x2,在點(diǎn)(-1,-3)處的切線的斜率為:4-3=1,
所求的切線方程為:y+3=x+1,
即y=x-2.
故選:D.

點(diǎn)評(píng) 本題考查切線方程的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)y=f(x)的圖象與y=2x+a的圖象關(guān)于直線y=x對(duì)稱,且f(2)+f(4)=-1,則a=(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知P是橢圓$\frac{{x}^{2}}{4}$+y2=1上的動(dòng)點(diǎn),則P點(diǎn)到直線l:x+y-2$\sqrt{5}$=0的距離的最小值為(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{2}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:?x0∈R,x0-2>1gx0;命題q:?x∈R,x2+x+1>0,給出下列結(jié)論( 。
①命題“p∧q”是真命題;     
②命題“p∧(¬q)”是假命題;
③命題“(¬p)∨q”是真命題;  
④命題“p∨(¬q)”是假命題.
A.②③B.①④C.①③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知$cos(\frac{π}{6}-x)=-\frac{{\sqrt{3}}}{3}$,則$cos(\frac{5π}{6}+x)+sin(\frac{2π}{3}-x)$=( 。
A.$-\sqrt{3}$B.-1C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=log(2-x)+1(m>0,且m≠1)的圖象恒過(guò)點(diǎn)P,且點(diǎn)P在直線ax+by=1,a,b∈R上,那么ab的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}滿足${a_1}+{a_3}=\frac{5}{8},{a_{n+1}}=2{a_n}$,其前n項(xiàng)和為Sn,則Sn-2an的值為-$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若cos θ=-$\frac{3}{5}$,且180°<θ<270°,則tan $\frac{θ}{2}$的值為( 。
A.2B.-2C.±2D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,矩形ABCD中,AB=1,BC=$\sqrt{3}$,將△ABD沿對(duì)角線BD向上翻折,若翻折過(guò)程中AC長(zhǎng)度在[$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{13}}{2}$]內(nèi)變化,則點(diǎn)A所形成的運(yùn)動(dòng)軌跡的長(zhǎng)度為$\frac{\sqrt{3}π}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案