9.已知定點(diǎn)O(0,0),A(3,0),動(dòng)點(diǎn)P到定點(diǎn)O距離與到定點(diǎn)A的距離的比值是$\frac{1}{\sqrt{λ}}$.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當(dāng)λ=4時(shí),記動(dòng)點(diǎn)P的軌跡為曲線D.F,G是曲線D上不同的兩點(diǎn),對于定點(diǎn)Q(-3,0),有|QF|•|QG|=4.試問無論F,G兩點(diǎn)的位置怎樣,直線FG能恒和一個(gè)定圓相切嗎?若能,求出這個(gè)定圓的方程;若不能,請說明理由.

分析 (Ⅰ)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),由$\sqrt{λ}$|PO|=|PA|代入坐標(biāo)整理得(λ-1)x2+(λ-1)y2+6x-9=0,對λ分類討論可得;
(Ⅱ)當(dāng)λ=4時(shí),曲線D的方程是x2+y2+2x-3=0,則由面積相等得到|QF|•|QG|sinθ=d|FG|,且圓的半徑r=2,由點(diǎn)到直線的距離公式以及直線和圓的位置關(guān)系可得.

解答 解:(Ⅰ)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(x,y),
則由$\sqrt{λ}$|PO|=|PA|得λ(x2+y2)=(x-3)2+y2,
整理得:(λ-1)x2+(λ-1)y2+6x-9=0,
∵λ>0,∴當(dāng)λ=1時(shí),方程可化為:2x-3=0,方程表示的曲線是線段OA的垂直平分線;
當(dāng)λ≠1時(shí),則方程可化為,$(x+\frac{3}{λ-1})^{2}$+y2=$(\frac{3\sqrt{λ}}{λ-1})^{2}$,
即方程表示的曲線是以(-$\frac{3}{λ-1}$,0)為圓心,$\frac{3\sqrt{λ}}{|λ-1|}$為半徑的圓.
(Ⅱ)當(dāng)λ=4時(shí),曲線D的方程是x2+y2+2x-3=0,
故曲線D表示圓,圓心是D(-1,0),半徑是2.
設(shè)點(diǎn)Q到直線FG的距離為d,∠FQG=θ,
則由面積相等得到|QF|•|QG|sinθ=d|FG|,且圓的半徑r=2.
即d=$\frac{4sinθ}{|FG|}$=$\frac{4sinθ}{2rsinθ}$=1.于是頂點(diǎn)Q到動(dòng)直線FG的距離為定值,
即動(dòng)直線FG與定圓(x+3)2+y2=1相切.

點(diǎn)評 本題考查參數(shù)方程和極坐標(biāo)方程,涉及分類討論的思想,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,已知角A、B、C的對邊分別為a,b,c,且tanAtanC=$\frac{1}{2cosAcosC}$+1.
(1)求B的大小;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{1}{2}$b2,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=($\frac{1}{2}$)x-log2x的零點(diǎn)為x0,則( 。
A.x0<1B.x0>3C.2<x0<3D.1<x0<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左焦點(diǎn)為圓心,且經(jīng)過此雙曲線右頂點(diǎn)的圓的標(biāo)準(zhǔn)方程為(  )
A.(x-3)2+y2=25B.(x-3)2+y2=16C.(x+3)2+y2=16D.(x+3)2+y2=25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$.
(1)求f(x)的單調(diào)增區(qū)間;
(2)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=loga$\frac{x-5}{x+5}$,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實(shí)數(shù)m使得f(x+2)+f(m-x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2-6x+5=0,點(diǎn)A,B在圓上,且AB=2$\sqrt{3}$則|$\overrightarrow{OA}+\overrightarrow{OB}$|的取值范圍是[4,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.平面向量$\overrightarrow a,\overrightarrow{b,}$$\overrightarrow e$滿足$|{\overrightarrow e}|=1,\overrightarrow a•\overrightarrow e=1,\overrightarrow b•\overrightarrow e=2,|{\overrightarrow a-\overrightarrow b}$|=2,當(dāng)$|{\overrightarrow a}$|=$\frac{\sqrt{7}}{2}$,$|{\overrightarrow b}$|=$\frac{\sqrt{19}}{2}$時(shí),$\overrightarrow a•\overrightarrow b$的最小值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)$\overrightarrow{a_k}=({cos\frac{kπ}{6},sin\frac{kπ}{6}+cos\frac{kπ}{6}}),k∈Z,則\overrightarrow{{a_{2015}}}•\overrightarrow{{a_{2016}}}$=(  )
A.$\sqrt{3}$B.$\sqrt{3}-\frac{1}{2}$C.$2\sqrt{3}-1$D.2

查看答案和解析>>

同步練習(xí)冊答案