14.已知函數(shù)f(x)=loga$\frac{x-5}{x+5}$,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實數(shù)m使得f(x+2)+f(m-x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.

分析 (1)f(x)=loga$\frac{x-5}{x+5}$為奇函數(shù),求函數(shù)的定義域并利用奇函數(shù)的定義證明即可;
(2)假設(shè)存在這樣的m,則f(x+2)+f(m-x)=loga$\frac{-{x}^{2}+(m-2)x-3(m-5)}{-{x}^{2}+(m-2)x+7(m+5)}$,即$\frac{-{x}^{2}+(m-2)x-3(m-5)}{-{x}^{2}+(m-2)x+7(m+5)}$為常數(shù),設(shè)為k,整理由多項式系數(shù)相等可得m和k的方程組,解方程組可得.

解答 解:(1)f(x)=loga$\frac{x-5}{x+5}$為奇函數(shù),下面證明:
解$\frac{x-5}{x+5}$>0可得定義域為{x|x<-5或x>5},關(guān)于原點對稱,
f(-x)=loga$\frac{x+5}{x-5}$=-loga$\frac{x-5}{x+5}$=-f(x),
∴函數(shù)f(x)為奇函數(shù);
(2)假設(shè)存在這樣的m,則f(x+2)+f(m-x)
=loga$\frac{x-3}{x+7}$•$\frac{-x+m-5}{-x+m+5}$=loga$\frac{-{x}^{2}+(m-2)x-3(m-5)}{-{x}^{2}+(m-2)x+7(m+5)}$,
∴$\frac{-{x}^{2}+(m-2)x-3(m-5)}{-{x}^{2}+(m-2)x+7(m+5)}$為常數(shù),設(shè)為k,
則(k-1)x2+(m-2)(1-k)x-3(m-5)-7k(m+5)=0對定義域內(nèi)的x恒成立
∴$\left\{\begin{array}{l}{k-1=0}\\{(m-2)(1-k)=0}\\{-3(m-5)-7k(m+5)=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=1}\\{m=-2}\end{array}\right.$
∴存在這樣的m=-2

點評 本題考查對數(shù)函數(shù)的圖象和性質(zhì),涉及恒成立問題,屬中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={x|2x>$\frac{1}{2}$},B={x|lgx>0},則A∩(∁RB)=(  )
A.(1,+∞)B.(0,1]C.(-1,1]D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列命題中真命題是(  )
A.若m⊥α,m?β,則α⊥β
B.若m?α,n?α,m∥β,n∥β,則α∥β
C.若α∩β=m,n∥m,則n∥α且n∥β
D.若m?α,n?α,m,n是異面直線,那么n與α相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知x、y滿則$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的2倍,則a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知定點O(0,0),A(3,0),動點P到定點O距離與到定點A的距離的比值是$\frac{1}{\sqrt{λ}}$.
(Ⅰ)求動點P的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當λ=4時,記動點P的軌跡為曲線D.F,G是曲線D上不同的兩點,對于定點Q(-3,0),有|QF|•|QG|=4.試問無論F,G兩點的位置怎樣,直線FG能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)$f(x)=a{log_2}x+a•{4^x}+3$在區(qū)間$(\frac{1}{2},1)$上有零點,則實數(shù)a的取值范圍是(  )
A.a<-3B.$-\frac{3}{2}<a<-\frac{3}{4}$C.$-3<a<-\frac{3}{4}$D.$-\frac{3}{2}<a<-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+cosα}\\{y=8+sinα}\end{array}\right.$(α為參數(shù));若以O(shè)為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,直線C2的極坐標方程為ρsin(θ-$\frac{π}{3}$)=$\frac{1}{2}$.
(1)求曲線C1和C2的直角坐標方程;
(2)在C2上是否存在點P,過P作C1的兩條切線,切點為A,B,使得△ABP為等邊三角形?若存在求出P點坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知極坐標系的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,已知曲線C的極坐標方程為ρ=2cosθ+2sinθ,
直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=-2-t}\\{y=m+t}\end{array}\right.$(t為參數(shù)),曲線C上至少3個點到直線l的距離等于$\frac{\sqrt{2}}{2}$.
(I)將直線l的參數(shù)方程化為普通方程,將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=-$\frac{x}{2x+1}$.
(1)判斷函數(shù)f(x)在(-$\frac{1}{2}$,+∞)上的單調(diào)性,并給予證明;
(2)設(shè)g(x)=tx+$\frac{{x}^{2}}{2x+1}$,當x∈($\frac{1}{2}$,3]時,g(x)>0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案