16.函數(shù)y=cos(sinx)的圖象大致是( 。
A.B.C.D.

分析 先判斷函數(shù)的奇偶性,再根據(jù)三角的函數(shù)的圖象和性質(zhì)即可得到答案.

解答 解:∵f(-x)=cos(sin(-x))=cos(sinx)=f(x),
∴函數(shù)f(x)為偶函數(shù),
∵-1≤sinx≤1,
∴-$\frac{π}{2}$+2kπ≤x≤$\frac{π}{2}$+2kπ,
∴y=cos(sinx)在x=2kπ時(shí)有最大值,且y>0,
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)圖象的識(shí)別,關(guān)鍵是掌握三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$A=\{x|5-x≥\sqrt{2(x-1)}\}$,B={x|x2-ax≤x-a},當(dāng)“x∈A”是“x∈B”的充分不必要條件,則a的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,PA⊥底面ABCD,E、F分別為AB、PC的中點(diǎn).
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)若PA=2,試問(wèn)在線段EF上是否存在點(diǎn)Q,使得二面角Q-AP-D的余弦值為$\frac{\sqrt{5}}{5}$?若存在,確定點(diǎn)Q的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.若a=2$\sqrt{7}$sinA,b=$\sqrt{21}$,a=3c,則c=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.圓x2+y2-4x+2y=0的圓心到直線3x+4y+3=0的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系.已知曲線C:ρsin2θ=2acosθ(a>0),過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),直線l與曲線C分別交于M、N兩點(diǎn).
(1)寫出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.市積極倡導(dǎo)學(xué)生參與綠色環(huán);顒(dòng),其中代號(hào)為“環(huán)保衛(wèi)士--12369”的綠色環(huán);顒(dòng)小組對(duì)2014年1月-2014年12月(一月)內(nèi)空氣質(zhì)量指數(shù)API進(jìn)行監(jiān)測(cè),如表是在這一年隨機(jī)抽取的100天的統(tǒng)計(jì)結(jié)果:
指數(shù)API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空氣質(zhì)量優(yōu)輕微污染輕度污染中度污染中重度污染重度污染
天數(shù)413183091115
(Ⅰ)若市某企業(yè)每天由空氣污染造成的經(jīng)濟(jì)損失P(單位:元)與空氣質(zhì)量指數(shù)API(記為t)的關(guān)系為:$P=\left\{\begin{array}{l}0,0≤t≤100\\ 4t-400,100<t≤300\\ 1500,t>300\end{array}\right.$,在這一年內(nèi)隨機(jī)抽取一天,估計(jì)該天經(jīng)濟(jì)損失P∈(200,600]元的概率;
(Ⅱ)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季節(jié),其中有8天為重度污染,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為A市本年度空氣重度污染與供暖有關(guān)?
非重度污染重度污染合計(jì)
供暖季22830
非供暖季63770
合計(jì)8515100
下面臨界值表功參考.
P(K2≥k)0.150.100.050.0100.0050.001
k2.0722.7063.8416.6357.87910.828
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若不等式組$\left\{\begin{array}{l}x-y≤0\\ x-2y+2≥0\\ x≥m\end{array}\right.$表示的平面區(qū)域是面積為$\frac{16}{9}$的三角形,則m的值為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$-\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z=-2+ai(a∈R,i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,且z•$\overline{z}$=6,則a=( 。
A.$\sqrt{2}$B.-$\sqrt{2}$C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案