4.各項均為正數(shù)的等比數(shù)列{an}中,若a2=1,a4=$\frac{1}{4}$,則其前n項和Sn=4$(1-\frac{1}{{2}^{n}})$.

分析 利用等比數(shù)列的通項公式與前n項和公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q>0,
∵a2=1,a4=$\frac{1}{4}$,
∴a1q=1,${a}_{1}{q}^{3}$=$\frac{1}{4}$,解得q=$\frac{1}{2}$,a1=2.
∴其前n項和Sn=$\frac{2(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=4$(1-\frac{1}{{2}^{n}})$.
故答案為:4$(1-\frac{1}{{2}^{n}})$.

點評 本題考查了等比數(shù)列的通項公式與前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=2cos2x-1的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一個球的體積是100cm3,試計算它的表面積(π取3.14,結(jié)果精確到1cm3,可用計算器).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),且對任意x,y∈(0,+∞)恒有f(xy)=f(x)+f(y)成立,
(1)求f(1)的值;
(2)證明:當(dāng)x>0時,f($\frac{1}{x}$)=-f(x);
(3)判定函數(shù)g(t)=t+$\frac{4}{t+2}$.當(dāng)t≥1時的單調(diào)性(寫出論證過程),并求對一切實數(shù)t≥1,恒有f(t+$\frac{4}{t+2}$)≥f(m)成立的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若角α的終邊落在直線x+y=0上,求在[-360°,360°]內(nèi)的所有滿足條件的角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列結(jié)論:
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,$y={x^{\frac{1}{2}}}$,y=(x-1)2,y=x3中有三個是增函數(shù);
②若logm3<logn3<0,則0<n<m<1;
③若函數(shù)f(x)是奇函數(shù),則f(x-1)的圖象關(guān)于點A(1,0)對稱;
④已知函數(shù)$f(x)=\left\{\begin{array}{l}{3^{x-2}},x≤2\\{log_3}(x-1),x>2\end{array}\right.$則方程 $f(x)=\frac{1}{2}$有兩個不相等的實數(shù)根,
其中正確結(jié)論的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{2x+a}{x+1}$在區(qū)間(0,1)單調(diào)增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x、y為銳角,$tanx=\frac{4}{7}$,$siny=\frac{{\sqrt{10}}}{10}$,求tan(x+2y)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在四面體ABCD中,已知$\overrightarrow{AB}$=$\overrightarrow b$,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow c$,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{EC}$,則$\overrightarrow{DE}$等于$\frac{1}{3}\overrightarrow{c}$-$\overrightarrow{a}$+$\frac{2}{3}\overrightarrow$

查看答案和解析>>

同步練習(xí)冊答案