分析 (1)以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出sinθ的值.
(2)設(shè)M(x,y,z),由$\overrightarrow{BM}$=$λ\overrightarrow{B{A}_{1}}$,得M(1,1-λ,2λ),從而$\overrightarrow{MA}$=(0,λ-1,2λ),$\overrightarrow{MP}$=(-1,λ,1-2λ),由此利用換元法能求出$\frac{AM}{MP}$的取值范圍.
解答 解:(1)以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,
則A(1,0,0),A1(1,0,2),B(1,1,0),P(0,1,1),
$\overrightarrow{B{A}_{1}}$=(0,-1,2),$\overrightarrow{BA}$=(0,-1,0),$\overrightarrow{BP}$=(-1,0,1),
設(shè)平面A1BP的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BP}=-x+z=0}\\{\overrightarrow{n}•\overrightarrow{B{A}_{1}}=-y+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,2,1),
又平面A1BA的法向量$\overrightarrow{m}$=(1,0,0),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{6}}$,
∴sinθ=$\sqrt{1-(\frac{1}{\sqrt{6}})^{2}}$=$\frac{\sqrt{30}}{6}$.
∴sinθ的值為$\frac{\sqrt{30}}{6}$.
(2)設(shè)M(x,y,z),∵$\overrightarrow{BM}$=$λ\overrightarrow{B{A}_{1}}$,即(x-1,y-1,z)=λ(0,-1,2),
∴M(1,1-λ,2λ),
$\overrightarrow{MA}$=(0,λ-1,2λ),$\overrightarrow{MP}$=(-1,λ,1-2λ),
$\frac{AM}{MP}$=$\sqrt{\frac{(λ-1)^{2}+4{λ}^{2}}{1+{λ}^{2}+(1-2λ)^{2}}}$=$\sqrt{\frac{5{λ}^{2}-2λ+1}{5{λ}^{2}-4λ+2}}$=$\sqrt{1+\frac{2λ-1}{5{λ}^{2}-4λ+2}}$,
令2λ-1=t∈[-1,1],
則$\frac{2λ-1}{5{λ}^{2}-4λ+2}$=$\frac{4t}{5{t}^{2}+2t+5}$,
當(dāng)t∈[-1,0)時(shí),$\frac{4t}{5{t}^{2}+2t+5}$∈[-$\frac{1}{2}$,0),
當(dāng)t∈(0,1]時(shí),$\frac{4t}{5{t}^{2}+2t+5}$∈(0,$\frac{1}{3}$),
當(dāng)t=0時(shí),$\frac{4t}{5{t}^{2}+2t+5}$=0,
∴$\frac{4t}{5{t}^{2}+2t+5}$∈[-$\frac{1}{2}$,$\frac{1}{3}$],
∴$\frac{AM}{MP}$=$\sqrt{1+\frac{4t}{5{t}^{2}+2t+5}}$∈[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{3}}{3}$].
點(diǎn)評(píng) 本題考查角的正弦值的求法,考查兩線(xiàn)段比值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1)(2)(3)(4) | B. | (1)(2)(3) | C. | (3)(5) | D. | (1)(2)(3)(5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題①和命題②都成立 | B. | 命題①和命題②都不成立 | ||
C. | 命題①成立,命題②不成立 | D. | 命題①不成立,命題②成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2$\sqrt{2}$,+∞) | B. | (-1,2$\sqrt{2}$) | C. | (1,+∞) | D. | (-3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com