A. | x2-$\frac{1}{5}$ | B. | x2+$\frac{1}{5}$ | C. | x2+x-$\frac{1}{5}$ | D. | x2+x+$\frac{1}{5}$ |
分析 由函數(shù)y=f(g(x))-x有零點可判斷g(f(x))=x有解,從而分別代入判斷即可.
解答 解:∵函數(shù)y=f(g(x))-x有零點,
∴方程f(g(x))=x有解,
∴g(f(g(x)))=g(x),
∴g(f(x))=x有解,
若g(f(x))=x2-$\frac{1}{5}$,
則可判斷x2-$\frac{1}{5}$=x有解,故成立;
若g(f(x))=x2+$\frac{1}{5}$,
則可判斷x2+$\frac{1}{5}$=x有解,故成立;
若g(f(x))=x2+x-$\frac{1}{5}$,
則可判斷x2+x-$\frac{1}{5}$=x有解,故成立;
若g(f(x))=x2+x+$\frac{1}{5}$,
則可判斷x2+x+$\frac{1}{5}$=x無解,故不成立;
故選:D.
點評 本題考查了復(fù)合函數(shù)的性質(zhì)的應(yīng)用及方程的根與函數(shù)的零點的關(guān)系應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{{3\sqrt{2}}}{10}$ | C. | $\frac{3}{{\sqrt{34}}}$ | D. | $\frac{5}{{\sqrt{34}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com