8.如圖所示,在透明塑料制成的長方體容器ABCD-A1B1C1D1灌進(jìn)一些水,將容器底面的一邊BC固定于地面上,再將容器傾斜,隨著傾斜程度的不同,有以下命題:
①水的形狀成棱柱形;
②水面EFGH的面積不變;
③A1D1始終與水面EFGH平行.
其中正確的序號是①③.

分析 ①由于BC固定,所以在傾斜的過程中,始終有AD∥EH∥FG∥BC,且平面AEFB∥平面DHGC,由此分析可得結(jié)論正確;
②水面四邊形EFGH的面積是改變的.
③利用直線平行直線,直線平行平面的判斷定理,容易推出結(jié)論.

解答 解:根據(jù)面面平行性質(zhì)定理,可得BC固定時(shí),
在傾斜的過程中,始終有AD∥EH∥FG∥BC,且平面AEFB∥平面DHGC,
故水的形狀成棱柱形,故①正確;
水面四邊形EFGH的面積是改變的,故②錯(cuò)誤;
因?yàn)锳′D′∥AD∥CB,所以A′D′∥水面EFGH正確,故③正確,
故正確的序號是:①③,
故答案為:①③.

點(diǎn)評 本題考查棱柱的結(jié)構(gòu)特征,考查空間想象能力,綜合性較強(qiáng),要求熟練掌握空間幾何體的體積和表面積公式

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0,命題q:實(shí)數(shù)x滿足log2x≤2.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若a>0且?q是?p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算:
(1)${(\sqrt{2}-1)^0}+{(\frac{16}{9})^{-\frac{1}{2}}}+{(\sqrt{8})^{-\frac{4}{3}}}$;
(2)${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}+2lg(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=lgx+x有零點(diǎn)的區(qū)間是(  )
A.(1,2)B.($\frac{1}{10},1$)C.(2,3)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將一個(gè)各個(gè)面上均涂有顏色的正方體鋸成n3(n≥3)個(gè)同樣大小的小正方體,從這些小正方體中任取1個(gè),則其中三面都涂有顏色的概率為( 。
A.$\frac{1}{n^3}$B.$\frac{4}{n^3}$C.$\frac{8}{n^3}$D.$\frac{1}{n^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等比數(shù)列{an}的前n項(xiàng)和Sn為,并且對任意的正整n數(shù)成立Sn+2=4Sn+3,則a2=( 。
A.2B.6C.2或6D.2或-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知F1,F(xiàn)2分別是雙曲線x2-$\frac{{y}^{2}}{2}$=1的左、右焦點(diǎn),過F1傾斜角為60°的直線交雙曲線于點(diǎn)M,N.求|MN|的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知α∈$(0,\frac{π}{2})$,β∈$(\frac{π}{2},π)$,且sinα>sinβ,則α與β的關(guān)系是( 。
A.0<β+α<$\frac{π}{2}$B.$\frac{π}{2}$<α+β<πC.π<α+β<$\frac{3}{2}$πD.$\frac{π}{2}$<α+β<$\frac{3}{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知在數(shù)列{an}中,an=$\frac{1}{n(n+1)}$,其前n項(xiàng)和為$\frac{9}{10}$,則在平面直角坐標(biāo)系中直線nx+y+(n+1)=0在y軸上的截距是(  )
A.-10B.-9C.10D.9

查看答案和解析>>

同步練習(xí)冊答案