20.求值arctan(cot$\frac{π}{3}$)=$\frac{π}{6}$.

分析 利用特殊角的三角函數(shù),反正切函數(shù)的定義和性質(zhì),求得arctan(cot$\frac{π}{3}$)的值.

解答 解:arctan(cot$\frac{π}{3}$)=arctan($\frac{\sqrt{3}}{3}$)=$\frac{π}{6}$,
故答案為:$\frac{π}{6}$.

點評 本題主要考查特殊角的三角函數(shù),反正切函數(shù)的定義和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標系xOy中,圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+cosθ}\\{y=2+sinθ}\end{array}}\right.$(θ為參數(shù)),以坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為:sinθ-2cosθ=0,直線l與圓C相交于A,B兩點,且|OA|<|OB|.
(1)求圓C的普通方程和直線l的直角坐標方程;
(2)求$\frac{{|{OA}|}}{{|{AB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知圓O:x2+y2=9及點C(2,1).
(1)若線段OC的垂直平分線交圓O于A,B兩點,試判斷四邊形OACB的形狀,并給予證明;
(2)過點C的直線l與圓O交于P,Q兩點,當△OPQ的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心;且‘拐點’就是對稱中心.”請你將這一發(fā)現(xiàn)作為條件,求若函數(shù)g(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$+$\frac{1}{x-\frac{1}{2}}$,則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx+d的圖象如圖所示,設(shè)φ(x)=ax2-bx+c+d,則下列結(jié)論成立的是(  )
A.φ(1)<0B.φ(1)>0C.φ(1)≤0D.φ(1)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a-b}\end{array}\right.$,若實數(shù)x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,則max{|2x+1|,|x-2y+5|}的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列各式中最小值為2的是( 。
A.$\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$B.$\frac{a}$+$\frac{a}$C.2x+$\frac{1}{2^x}$D.cosx+$\frac{1}{cosx}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是(  )
A.y=$\frac{1}{x}$B.y=x2C.y=x3D.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.${A}_{n}^{m}$=n×(n-1)×…×[n-(m-1)]=$\frac{n!}{(n-m)!}$.

查看答案和解析>>

同步練習(xí)冊答案