9.函數(shù)y=1+logax(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-2=0上,其中mn>0,則$\frac{1}{m}+\frac{3}{n}$的最小
值為(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.2D.$\sqrt{3}$

分析 求出定點A的坐標(biāo),代入直線方程,得到m.n的關(guān)系,利用基本不等式求解最小值即可.

解答 解:函數(shù)y=1+logax(a>0,a≠1)的圖象恒過定點A(1,1),若點A在直線mx+ny-2=0上,
可得m+n=2,
$\frac{1}{m}+\frac{3}{n}$=$\frac{1}{2}(\frac{1}{m}+\frac{3}{n})(m+n)$=$\frac{1}{2}$$(1+3+\frac{n}{m}+\frac{3m}{n})$=$2+\frac{n}{2m}+\frac{3m}{2n}$≥2+2$\sqrt{\frac{n}{2m}•\frac{3m}{2n}}$=2+$\sqrt{3}$.
當(dāng)且僅當(dāng)m=$\sqrt{3}-1$,n=$3-\sqrt{3}$時取等號.
表達式的最小值為:2+$\sqrt{3}$.
故選:A.

點評 本題考查指數(shù)函數(shù)的單調(diào)性與特殊點的應(yīng)用,基本不等式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是( 。
A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log2(1-x),g(x)=log2(1+x),令F(x)=f(x)-g(x).
(1)求F(x)的定義域;
(2)若a,b∈(0,1),猜想F(a)+F(b)與F($\frac{a+b}{1+ab}$)之間的關(guān)系并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.lg0.01+log216=2;${[{(-2)^6}]^{\frac{1}{2}}}-{(\frac{1}{4})^{-\frac{1}{2}}}$=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)對任意的x∈R都滿足f(x)+f(-x)=0,當(dāng)x≥0時,f(x)=$\left\{\begin{array}{l}{-x,0≤x≤a}\\{-a,a<x<2a}\\{x-3a,x≥2a}\end{array}\right.$,(a>0),若對?x∈R,都有f(x-2)≤f(x),則實數(shù)a的取值范圍為(  )
A.(0,$\frac{1}{4}$)B.[$\frac{1}{4}$,$\frac{1}{3}$]C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合A={x|x=in,n∈N+}(i是虛數(shù)單位),B={1,-1},則A∩B等于( 。
A.{-1}B.{1}C.D.{1,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.要得到函數(shù)g(x)=$sin(2x+\frac{π}{6})$,只需將f(x)=cos2x的圖象( 。
A.左移$\frac{π}{3}$個單位B.右移$\frac{π}{3}$個單位C.左移$\frac{π}{6}$個單位D.右移$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}為等差數(shù)列,a5=14,a7=20;數(shù)列{bn}的前n項和為Sn,且bn=2-2Sn
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)求證:a1b1+a2b2+…+anbn<$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示是某一幾何體的三視圖,則這個幾何體是(  )
A.圓柱體B.圓錐體C.正方體D.球體

查看答案和解析>>

同步練習(xí)冊答案