1.要得到函數(shù)g(x)=$sin(2x+\frac{π}{6})$,只需將f(x)=cos2x的圖象( 。
A.左移$\frac{π}{3}$個單位B.右移$\frac{π}{3}$個單位C.左移$\frac{π}{6}$個單位D.右移$\frac{π}{6}$個單位

分析 由條件利用誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:∵函數(shù)g(x)=$sin(2x+\frac{π}{6})$=cos($\frac{π}{3}$-2x)=cos(2x-$\frac{π}{3}$)=cos2(x-$\frac{π}{6}$),
故將f(x)=cos2x的圖象向右平移$\frac{π}{6}$個單位,可得到函數(shù)g(x)=$sin(2x+\frac{π}{6})$的圖象,
故選:D.

點評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)g(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當x>0時,xg(x)-f(x)<0,則使得f(x)<0成立的x的取值范圍是( 。
A.(-∞,-1)∪(0,1)B.(0,1)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當m=-1時,求A∪B,∁R(A∩B);
(2)若A⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=1+logax(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny-2=0上,其中mn>0,則$\frac{1}{m}+\frac{3}{n}$的最小
值為(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若$\sqrt{x}+\sqrt{y}≤a\sqrt{x+y}$(x>0,y>0)恒成立,則a的最小值為( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知實數(shù)數(shù)列{an}滿足:an+2=|an+1|-an(n=1,2,…),a1=a,a2=b,記集合M={an|n∈N*}.
(Ⅰ)若a=1,b=2,用列舉法寫出集合M;
(Ⅱ)若a<0,b<0,判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
(Ⅲ)若a≥0,b≥0,且a+b≠0,求集合M的元素個數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{AB}$=(m,2),$\overrightarrow{CD}$=(-2,4),若$\overrightarrow{AB}$⊥$\overrightarrow{CD}$,則m=4,若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.計算:
(1)${({\frac{13}{6}})^0}+{({\frac{1}{2}})^{-2}}-{({\frac{25}{4}})^{\frac{1}{2}}}+{({0.001})^{\frac{1}{3}}}$
(2)$lg4+lg25-{5^{{{log}_5}3}}+({log_2}9).({log_3}4)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若b=2,B=2A,則c的取值范圍是($\sqrt{2}$,$\frac{4\sqrt{3}}{3}$).

查看答案和解析>>

同步練習(xí)冊答案