【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為.

(1)求的值;

(2)求函數(shù)的對稱軸方程;

(3)當(dāng)時,方程有兩個不同的實根,求m的取值范圍。

【答案】(1) .(2) ;(3)

【解析】

(1)根據(jù)題意求出φ、ω的值,寫出f(x)的解析式,計算的值;(2)由f(x)寫出函數(shù)的解析式,求出對稱軸方程;(3)f(x)=m有兩個不同的實根,則函數(shù)y=f(x)與y=m有兩個不同的交點(diǎn),t=2x, ,的圖像與有兩個不同交點(diǎn)即可求結(jié)果.

解:(1)是偶函數(shù),則φ﹣=+kπ(k∈Z),

解得φ=+kπ(k∈Z),

又因為0<φ<π,所以φ=,

所以=2cosωx;

由題意得=2,所以ω=2;

f(x)=2cos 2x,

因此=2cos =;

(2)由f(x)=2cos 2x,

=

所以,

,

所以函數(shù)的對稱軸方程為

(3)f(x)=m有兩個不同的實根,則函數(shù)y=f(x)與y=m有兩個不同的交點(diǎn),函數(shù)y=f(x)=2cos 2x,span>令t=2x, ,的圖像與有兩個不同交點(diǎn),由圖像知

m的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

I)求棱錐C-ADE的體積;

II)求證:平面ACE⊥平面CDE;

III)在線段DE上是否存在一點(diǎn)F,使AF∥平面BCE?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形內(nèi)角A滿足,則的值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句“運(yùn)籌帷幄之中,決勝千里之外.”其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌,古代是用算籌來進(jìn)行計算,算籌是將幾寸長的小竹棍擺在平面上進(jìn)行運(yùn)算,算籌的擺放形式有縱橫兩種形式,如下表

表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位,百位,萬位數(shù)用縱式表示,十位,千位,十萬位用橫式表示,以此類推例如6613用算籌表示就是 ,則26337用算籌可表示為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)計劃用兩張鐵絲網(wǎng)在一片空地上圍成一個梯形養(yǎng)雞場,,,已知兩段是由長為的鐵絲網(wǎng)折成,兩段是由長為的鐵絲網(wǎng)折成.設(shè)上底的長為,所圍成的梯形面積為.

1)求S關(guān)于x的函數(shù)解析式,并求x的取值范圍;

2)當(dāng)x為何值時,養(yǎng)雞場的面積最大?最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數(shù)”,指數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動,每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有(

A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著全民健康運(yùn)動的普及,每天一萬步已經(jīng)成為一種健康時尚,某學(xué)校為了教職工健康工作,在全校范圍內(nèi)倡導(dǎo)每天一萬步健步走活動,學(xué)校界定一人一天走路不足4千步為健步常人,不少于16千步為健步超人,其他為健步達(dá)人,學(xué)校隨機(jī)抽查了36名教職工,其每天的走步情況統(tǒng)計如下:

步數(shù)

人數(shù)

6

18

12

現(xiàn)對抽查的36人采用分層抽樣的方式選出6

1)求從這三類人中各抽多少人;

2)現(xiàn)從選出的6人中隨機(jī)抽取2人,求這兩人健步類型相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園有三個警衛(wèi)室、有直道相連,千米,千米,千米.

(1)保安甲沿從警衛(wèi)室出發(fā)行至點(diǎn)處,此時,求的直線距離;

(2)保安甲沿從警衛(wèi)室出發(fā)前往警衛(wèi)室,同時保安乙沿從警衛(wèi)室出發(fā)前往警衛(wèi)室,甲的速度為1千米/小時,乙的速度為2千米/小時,若甲乙兩人通過對講機(jī)聯(lián)系,對講機(jī)在公園內(nèi)的最大通話距離不超過3千米,試問有多長時間兩人不能通話?(精確到0.01小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn)A,B.

(1)求橢圓的方程;

(2)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案