A. | 8 | B. | 18 | C. | 36 | D. | 48 |
分析 首先由約束條件畫(huà)出可行域,利用目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值是12,確定a,b之間的關(guān)系,二次函數(shù)的圖象和性質(zhì)確定函數(shù)的最小值
解答 解:作出不等式對(duì)應(yīng)的平面區(qū)域如圖:
由z=ax+by(a>0,b>0),
得y=$-\frac{a}x+\frac{z}$,
平移直線y=$-\frac{a}$x,由圖象可知當(dāng)直線y=-$\frac{a}$經(jīng)過(guò)點(diǎn)A時(shí),直線y$-\frac{a}$的截距最大,此時(shí)確定最大值12,
由$\left\{\begin{array}{l}{2x-y-2=0}\\{x-y+2=0}\end{array}\right.$,得A(4,6),代入目標(biāo)函數(shù)得到4a+6b=12,即a=3-1.5b,
所以4a2+9b2=4(3-1.5b)2+9b2=18b2-36b+36=18(b-1)2+18≥18,
所以4a2+9b2的最小值為18.
故選:B
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,確定a,b的關(guān)系是解決本題的關(guān)鍵,利用二次函數(shù)的性質(zhì)求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=$\frac{1}{2}$,b=1 | B. | a=-$\frac{1}{2}$,b=-1 | C. | a=-$\frac{1}{2}$,b=1 | D. | a=$\frac{1}{2}$,b=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{10}$ | B. | $\frac{9}{20}$ | C. | $\frac{29}{45}$ | D. | $\frac{29}{90}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.8413 | B. | 0.6587 | C. | 0.1587 | D. | 0.3413 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com